Embedding Perovskite in Polymer Matrix Achieved Positive Temperature Response with Inversed Temperature Crystallization

Meiting Peng , Xue Guan , Yingzhu Wu , Nan Zhang , Qi Feng , Liyong Tian , Yancheng Wu , Yangfan Zhang , Feng Gan , Fuqin Deng , Meilin Huang , Guichuan Xing , Ningbo Yi

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12713

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12713 DOI: 10.1002/eem2.12713
RESEARCH ARTICLE

Embedding Perovskite in Polymer Matrix Achieved Positive Temperature Response with Inversed Temperature Crystallization

Author information +
History +
PDF

Abstract

Organic perovskites are promising semiconductor materials for advanced photoelectric applications. Their fluorescence typically shows a negative temperature coefficient due to bandgap change and structural instability. In this study, a novel perovskite-based composite with positive sensitivity to temperature was designed and obtained based on its inverse temperature crystallization, demonstrating good flexibility and solution processability. The supercritical drying method was used to address the limitations of annealing drying in preparing high-performance perovskite. Optimizing the precursor composition proved to be an effective approach for achieving high fluorescence and structural integrity in the perovskite material. This perovskite-based composite exhibited a positive temperature sensitivity of 28.563% °C-1 for intensity change and excellent temperature cycling reversibility in the range of 25–40 °C in an ambient environment. This made it suitable for use as a smart window with rapid response. Furthermore, the perovskite composite was found to offer temperature-sensing photoluminescence and flexible processability due to its components of perovskite-based compounds and polyethylene oxide. The organic precursor solvent could be a promising candidate for use as ink to print or write on various substrates for optoelectronic devices responding to temperature.

Keywords

flexibility / inversed temperature crystallization / perovskite / positive temperature response

Cite this article

Download citation ▾
Meiting Peng, Xue Guan, Yingzhu Wu, Nan Zhang, Qi Feng, Liyong Tian, Yancheng Wu, Yangfan Zhang, Feng Gan, Fuqin Deng, Meilin Huang, Guichuan Xing, Ningbo Yi. Embedding Perovskite in Polymer Matrix Achieved Positive Temperature Response with Inversed Temperature Crystallization. Energy & Environmental Materials, 2024, 7(5): e12713 DOI:10.1002/eem2.12713

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Wang, B. Daiber, J. Frost, S. Mann, E. Garnett, A. Walsh, B. Ehrler, Energ Environ. Sci. 2017, 10, 509.

[2]

B. Ghosh, B. Febriansyah, P. C. Harikesh, T. M. Koh, S. Hadke, L. H. Wong, J. England, S. G. Mhaisalkar, N. Mathews, Chem. Mater. 2020, 32, 631.

[3]

W. Zhang, Z. Sun, J. Zhang, S. Han, C. Ji, L. Li, M. Hong, J. Luo, J. Mate. Chem. C 2017, 5, 996.

[4]

M. Kober-Czerny, S. G. Motti, P. Holzhey, B. Wenger, J. Lim, L. M. Herz, H. J. Snaith, Adv. Funct. Mater. 2022, 3, 2203064.

[5]

K. Schötz, A. M. Askar, W. Peng, D. Seeberger, T. P. Gujar, M. Thelakkat, A. Köhler, S. Huettner, O. M. Bakr, K. Shankar, J. Mate. Chem. C 2022, 8, 2289.

[6]

J. S. Kim, J. M. Heo, G. S. Park, S. J. Woo, C. Cho, H. J. Yun, D. H. Kim, J. Park, S. C. Lee, S. H. Park, Nature 2022, 61, 688.

[7]

Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou, L. Chu, S. J. Su, J. Peng, H. L. Yip, Y. Cao, Joule 2021, 5, 456.

[8]

W. Sun, Y. Liu, G. Qu, Y. Fan, W. Dai, Y. Wang, Q. Song, J. Han, S. Xiao, Nat. Commun. 2020,

[9]

Y. Mi, Y. Zhong, Q. Zhang, X. Liu, Adv. Opt. Mater. 2019, 7, 1900544.

[10]

Y. H. Lee, I. Song, S. H. Kim, J. H. Park, S. O. Park, J. H. Lee, Y. Won, K. Cho, S. K. Kwak, J. H. Oh, Adv. Mater. 2020, 32, 2070238.

[11]

J. Li, J. Wang, J. Ma, H. Shen, L. Li, X. Duan, D. Li, Nat. Commun. 2019,

[12]

G. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X. Liu, E. H. Sargent, W. Gao, Nat. Rev. Mater. 2020, 5, 423.

[13]

J. Y. Kim, J. W. Lee, H. S. Jung, H. Shin, N. G. Park, Chem. Rev. 2020, 120, 7867.

[14]

N. N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y. B. Cheng, U. Bach, Adv. Energy Mater. 2017, 7, 1602761.

[15]

M. Batmunkh, Y. L. Zhong, H. Zhao, Adv. Mater. 2020, 32, 2000631.

[16]

Y. Yin, Z. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. Peng, J. Geng, S. Pan, Y. Wu, J. Hou, J. Fan, D. Li, X. Zhang, H. Meng, Adv. Mater. Technol. 2020, 5, 2000251.

[17]

X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu, Z. Hong, L. Xie, H. Bian, Z. Yi, X. Chen, Y. Wu, X. Song, J. Li, Q. Chen, H. Yang, X. Liu, Nature 2021, 590, 410.

[18]

B. Wang, C. Zhang, S. Huang, Z. Li, L. Kong, L. Jin, J. Wang, K. Wu, L. Li, ACS Appl. Mater. Interfaces 2018, 10, 23303.

[19]

A. Ummadisingu, L. Steier, J. Y. Seo, T. Matsui, A. Abate, W. Tress, M. Grätzel, Nature 2017, 545, 208.

[20]

W. Tan, A. R. Bowring, A. C. Meng, M. D. McGehee, P. C. McIntyre, ACS Appl. Mater. Interfaces 2018, 10, 5485.

[21]

X. Li, Y. Wang, H. Sun, H. Zeng, Adv. Mater. 2017, 29, 1701185.

[22]

H. Wang, X. Yin, L. Wang, J. Mater. Chem. C 2018, 6, 11569.

[23]

Y. Li, Y. Wang, T. Zhang, S. Yoriya, P. Kumnorkaew, S. Chen, X. Guo, Y. Zhao, Chem. Commun. 2018, 54, 9809.

[24]

D. B. Straus, S. Guo, A. M. Abeykoon, R. J. Cava, Adv. Mater. 2020, 32, 2001069.

[25]

F. Brivio, C. Caetano, A. Walsh, J. Phys. Chem. Lett. 2016, 7, 1083.

[26]

J. W. Oh, H. Han, H. H. Kim, H. Lee, D. Kim, J. Lee, J. Kim, W. K. Choi, C. Park, Adv. Funct. Mater. 2022, 32, 2111894.

[27]

Y. Wang, Y. Zhu, J. Huang, J. Cai, J. Zhu, X. Yang, J. Shen, C. Li, Nanoscale Horiz. 2017, 2, 225.

[28]

X. Pei, D. Xiong, J. Fan, Z. Li, H. Wang, J. Wang, Carbon 2017, 117, 147.

[29]

J. Xu, S. Tanabe, A. D. Sontakke, J. Ueda, Appl. Phys. Lett. 2015, 107, 81903.

[30]

C. Muthu, S. R. Nagamma, V. C. Nair, RSC Adv. 2014, 4, 55908.

[31]

J. Chen, Z. Mo, X. Yang, H. Zhou, Q. Gao, Chem. Commun. 2017, 53, 6949.

[32]

M. Peng, F. Zhang, L. Tian, L. You, J. Wu, N. Wen, Y. Zhang, Y. Wu, F. Gan, H. Yu, J. Zhao, Q. Feng, F. Deng, L. Zheng, Y. Wu, N. Yi, Polymers 2022, 14, 435.

[33]

M. A. Haque, A. Syed, F. H. Akhtar, R. Shevate, S. Singh, K. V. Peinemann, D. Baran, T. Wu, ACS Appl. Mater. Interfaces 2019, 11, 29821.

[34]

S. K. Yadav, G. Kri, D. P. Grandhi, J. C. Dubal, M. de Mello, R. Otyepka, R. A. Zbořil, K. J. Fischer, Small 2020, 16, 2004891.

[35]

M. Ren, C. D. Brites, S. S. Bao, R. A. Ferreira, L. M. Zheng, L. D. Carlos, J. Mater. Chem. C 2015, 3, 8480.

[36]

X. Lian, D. Zhao, Y. Cui, Y. Yang, G. Qian, Chem. Commun. 2015, 51, 17676.

[37]

M. Back, J. Ueda, J. Xu, D. Murata, M. G. Brik, ACS Appl. Mater. Interfaces 2019, 11, 38937.

[38]

Q. , H. Wei, W. Sun, K. Wang, Z. Gu, J. Li, S. Liu, S. Xiao, Q. Song, Adv. Mater. 2016, 28, 10165.

[39]

B. Zhuang, Y. Liu, S. Yuan, H. Huang, J. Chen, D. Chen, Nano 2019, 11, 15010.

[40]

F. Palazon, C. Urso, L. De Trizio, Q. Akkerman, S. Marras, F. Locardi, I. Nelli, M. Ferretti, M. Prato, L. Manna, ACS Energy Lett. 2017, 2, 2445.

[41]

M. Martínez-Abadía, R. Giménez, M. B. Ros, Adv. Mater. 2018, 30, 1704161.

[42]

C. Y. Huang, S. H. Huang, C. L. Wu, Z. H. Wang, C. C. Yang, ACS Appl. Nano Mater. 2020, 3, 11760.

[43]

K. Al-Yahmadi, H. H. Kyaw, M. T. Z. Myint, R. Al-Mamari, S. Dobretsov, M. Al-Abri, Discover Nano 2023, 18, 45.

[44]

S. Esposito, Materials 2019, 12, 668.

[45]

A. Eftekhari, Electrochim. Acta 2003, 48, 2831.

[46]

A. Hankin, F. E Bedoya-Lora, J. C. Alexander, A. Regoutz, G. H. Kelsall, J. Mater. Chem. A 2019, 7, 26162.

[47]

P. Kumar, P. Chand, J. Alloy. Compd. 2018, 748, 504.

[48]

H. Yu, H. Wang, J. Zhang, J. Lu, Z. Yuan, W. Xu, L. Hultman, A. A. Bakulin, R. H. Friend, J. Wang, Small 2019, 15, 1804947.

[49]

D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Science 2015, 348, 683.

[50]

S. Zhang, M. N. Shah, F. Liu, Z. Zhang, Q. Hu, T. P. Russell, M. Shi, C. Z. Li, H. Chen, Nano Res. 2017, 10, 3765.

[51]

Z. Wang, T. Cheng, F. Wang, S. Dai, Z. A. Tan, Small 2016, 12, 4412.

[52]

K. Liu, R. Zhang, J. Sun, M. Wu, T. Zhao, ACS Appl. Mater. Interfaces 2019, 11, 46930.

[53]

A. A. Sutanto, N. Drigo, V. I. Queloz, I. Garcia-Benito, A. R. Kirmani, L. J. Richter, P. A. Schouwink, K. T. Cho, S. Paek, M. K. Nazeeruddin, J. Mater. Chem. A 2020, 8, 2343.

[54]

T. Liashenko, S. Anoshkin, A. Pushkarev, V. Pakštas, A. Zakhidov, S. Makarov, J. Phys. Conf. Ser. IOP Publishing 2020, 1461, 12086.

[55]

M. T. Hoang, N. D. Pham, Y. Yang, V. T. Tiong, C. Zhang, K. Gui, H. Chen, J. Chang, J. Wang, D. Golberg, Green Chem. 2020, 22, 3433.

[56]

M. Peng, F. Zhang, L. Tian, L. You, J. Wu, N. Wen, Y. Zhang, Y. Wu, F. Gan, H. Yu, J. Zhao, Q. Feng, F. Deng, L. Zhang, Y. Wu, N. Yi, Polymers 2022, 14, 4354.

[57]

L. Chen, H. Wang, W. Zhang, F. Li, Z. Wang, X. Wang, Y. Shao, J. Shao, ACS Appl. Mater. Interfaces 2022, 14, 10917.

[58]

H. Shen, R. Nan, Z. Jian, X. Li, J. Mater. Sci. 2019, 54, 11596.

[59]

N. Yi, S. Wang, Z. Duan, K. Wang, Q. Song, S. Xiao, Adv. Mater. 2017, 29, 1701636.

[60]

Z. Dang, J. Shamsi, F. Palazon, M. Imran, Q. A. Akkerman, S. Park, G. Bertoni, M. Prato, R. Brescia, L. Manna, ACS Nano 2017, 11, 2124.

[61]

S. G. R Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, ACS Nano 2016, 10, 1795.

[62]

Z. Gu, Y. Wang, S. Wang, T. Zhang, R. Zhao, X. Hu, Z. Huang, M. Su, Q. Xu, L. Li, Nano Res. 2022, 15, 1547.

[63]

Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. Perez-Orive, Y. Du, L. Tan, K. Hanson, B. Ma, Adv. Mater. 2016, 28, 8983.

[64]

M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, Nat. Commun. 2015, 6, 7586.

[65]

Z. Gan, Z. Yu, M. Meng, W. Xia, X. Zhang, APL Mater. 2019, 7, 31107.

[66]

K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, Nature 2018, 562, 245.

[67]

Y. Niu, F. Zhang, Z. Bai, Y. Dong, J. Yang, R. Liu, B. Zou, J. Li, H. Zhong, Adv. Opt. Mater. 2015, 3, 112.

[68]

M. P. Neubauer, M. Poehlmann, A. Fery, Adv. Colloid Interfac. 2014, 207, 65.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/