Stable Organic Solar Cells Enabled by Simultaneous Hole and Electron Interlayer Engineering

Wisnu Tantyo Hadmojo , Furkan H. Isikgor , Yuanbao Lin , Zhaoheng Ling , Qiao He , Hendrik Faber , Emre Yengel , Roshan Ali , Abdus Samad , Ryanda Enggar Anugrah Ardhi , Sang Young Jeong , Han Young Woo , Udo Schwingenschlögl , Martin Heeney , Thomas D. Anthopoulos

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12712

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12712 DOI: 10.1002/eem2.12712
RESEARCH ARTICLE

Stable Organic Solar Cells Enabled by Simultaneous Hole and Electron Interlayer Engineering

Author information +
History +
PDF

Abstract

The development of high-performance organic solar cells (OSCs) with high operational stability is essential to accelerate their commercialization. Unfortunately, our understanding of the origin of instabilities in state-of-the-art OSCs based on bulk heterojunction (BHJ) featuring non-fullerene acceptors (NFAs) remains limited. Herein, we developed NFA-based OSCs using different charge extraction interlayer materials and studied their storage, thermal, and operational stabilities. Despite the high power conversion efficiency (PCE) of the OSCs (17.54%), we found that cells featuring self-assembled monolayers (SAMs) as hole-extraction interlayers exhibited poor stability. The time required for these OSCs to reach 80% of their initial performance (T80) was only 6 h under continuous thermal stress at 85 °C in a nitrogen atmosphere and 1 h under maximum power point tracking (MPPT) in a vacuum. Inserting MoOx between ITO and SAM enhanced the T80 to 50 and ∼15 h after the thermal and operational stability tests, respectively, while maintaining a PCE of 16.9%. Replacing the organic PDINN electron transport layer with ZnO NPs further enhances the cells’ thermal and operational stability, boosting the T80 to 1000 and 170 h, respectively. Our work reveals the synergistic roles of charge-selective interlayers and device architecture in developing efficient and stable OSCs.

Keywords

interlayers / metal oxide / organic solar cells / self-assembled monolayers / stability

Cite this article

Download citation ▾
Wisnu Tantyo Hadmojo, Furkan H. Isikgor, Yuanbao Lin, Zhaoheng Ling, Qiao He, Hendrik Faber, Emre Yengel, Roshan Ali, Abdus Samad, Ryanda Enggar Anugrah Ardhi, Sang Young Jeong, Han Young Woo, Udo Schwingenschlögl, Martin Heeney, Thomas D. Anthopoulos. Stable Organic Solar Cells Enabled by Simultaneous Hole and Electron Interlayer Engineering. Energy & Environmental Materials, 2024, 7(5): e12712 DOI:10.1002/eem2.12712

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171.

[2]

Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.

[3]

L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656.

[4]

C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energ. Environ. Sci. 2022, 15, 2537.

[5]

H. Xia, Y. Zhang, W. Deng, K. Liu, X. Xia, C.-J. Su, U.-S. Jeng, M. Zhang, J. Huang, J. Huang, C. Yan, W.-Y. Wong, X. Lu, W. Zhu, G. Li, Adv. Mater. 2022, 34, 2107659.

[6]

F. T. A Wibowo, N. V. Krishna, S. Sinaga, S. Lee, W. T. Hadmojo, Y. R. Do, S.-Y. Jang, Cell Rep. Phys. Sci. 2021, 2, 100517.

[7]

H. Song, D. Hu, J. Lv, S. Lu, C. Haiyan, Z. Kan, Adv. Sci. 2022, 9, 2105575.

[8]

H. Zhao, B. Lin, J. Xue, H. B. Naveed, C. Zhao, X. Zhou, K. Zhou, H. Wu, Y. Cai, D. Yun, Z. Tang, W. Ma, Adv. Mater. 2022, 34, 2105114.

[9]

H. Kang, G. Kim, J. Kim, S. Kwon, H. Kim, K. Lee, Adv. Mater. 2016, 28, 7821.

[10]

A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H. J. Egelhaaf, J. Hauch, Sol. Energy 2011, 85, 1238.

[11]

K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, Sol. Energy Mater. Sol. Cells 2006, 90, 3520.

[12]

Y. Tamai, H. Ohkita, M. Namatame, K. Marumoto, S. Shimomura, T. Yamanari, S. Ito, Adv. Energy Mater. 2016, 6, 1600171.

[13]

B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.

[14]

S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V. Zaretski, D. J. Lipomi, Chem. Mater. 2014, 26, 3028.

[15]

I. A. Channa, A. Distler, M. Zaiser, C. J. Brabec, H.-J. Egelhaaf, Adv. Energy Mater. 2019, 9, 1900598.

[16]

L. Duan, A. Uddin, Adv. Sci. 2020, 7, 1903259.

[17]

L.-Y. Su, H.-H. Huang, C.-E. Tsai, C.-H. Hou, J.-J. Shyue, C.-H. Lu, C.-W. Pao, M.-H. Yu, L. Wang, C.-C. Chueh, Small 2022, 18, 2107834.

[18]

J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 2016, 1, 15027.

[19]

X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen, Nano Lett. 2005, 5, 579.

[20]

X. Yang, J. K. J. van Duren, R. A. J. Janssen, M. A. J. Michels, J. Loos, Macromolecules 2004, 37, 2151.

[21]

A. J. Clarke, J. Luke, R. Meitzner, J. Wu, Y. Wang, H. K. H. Lee, E. M. Speller, H. Bristow, H. Cha, M. J. Newman, K. Hooper, A. Evans, F. Gao, H. Hoppe, I. McCulloch, U. S. Schubert, T. M. Watson, J. R. Durrant, W. C. Tsoi, J.-S. Kim, Z. Li, Cell Rep. Phys. Sci. 2021, 2, 100498.

[22]

Y. Wang, W. Lan, N. Li, Z. Lan, Z. Li, J. Jia, F. Zhu, Adv. Energy Mater. 2019, 9, 1900157.

[23]

Y. Lin, J. Wang, Z.-G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.

[24]

Y. Ma, M. Zhang, S. Wan, P. Yin, P. Wang, D. Cai, F. Liu, Q. Zheng, Joule 2021, 5, 197.

[25]

Y. Ma, D. Cai, S. Wan, P. Yin, P. Wang, W. Lin, Q. Zheng, Natl. Sci. Rev. 2020, 7, 1886.

[26]

Y. Wei, Z. Chen, G. Lu, N. Yu, C. Li, J. Gao, X. Gu, X. Hao, G. Lu, Z. Tang, J. Zhang, Z. Wei, X. Zhang, H. Huang, Adv. Mater. 2022, 34, 2204718.

[27]

L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mat. 2022, 21, 656.

[28]

J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.

[29]

X. Li, L. Zhou, X. Lu, L. Cao, X. Du, H. Lin, C. Zheng, S. Tao, Mater. Chem. Front. 2021, 5, 3850.

[30]

J. Song, L. Zhu, C. Li, J. Xu, H. Wu, X. Zhang, Y. Zhang, Z. Tang, F. Liu, Y. Sun, Matter 2021, 4, 2542.

[31]

R. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia, F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min, Joule 2023, 7, 221.

[32]

W. Yang, Z. Luo, R. Sun, J. Guo, T. Wang, Y. Wu, W. Wang, J. Guo, Q. Wu, M. Shi, H. Li, C. Yang, J. Min, Nat. Commun. 2020, 11, 1218.

[33]

S. Jeong, A. Rana, J.-H. Kim, D. Qian, K. Park, J.-H. Jang, J. Luke, S. Kwon, J. Kim, P. S. Tuladhar, J.-S. Kim, K. Lee, J. R. Durrant, H. Kang, Adv. Sci. 2023, 10, 2206802.

[34]

H. Chen, Y. Zou, H. Liang, T. He, X. Xu, Y. Zhang, Z. Ma, J. Wang, M. Zhang, Q. Li, C. Li, G. Long, X. Wan, Z. Yao, Y. Chen, Sci. China Chem. 2022, 65, 1362.

[35]

H. Chen, Z. Zhang, P. Wang, Y. Zhang, K. Ma, Y. Lin, T. Duan, T. He, Z. Ma, G. Long, C. Li, B. Kan, Z. Yao, X. Wan, Y. Chen, Energ. Environ. Sci. 2023, 16, 1773.

[36]

J. Yao, Q. Chen, C. Zhang, Z.-G. Zhang, Y. Li, SusMat 2022, 2, 243.

[37]

M. P. D Jong, L. J. V. IJzendoorn, M. J. A. D. Voigt, Appl. Phys. Lett. 2000, 77, 2255.

[38]

M. Zeng, X. Wang, R. Ma, W. Zhu, Y. Li, Z. Chen, J. Zhou, W. Li, T. Liu, Z. He, H. Yan, F. Huang, Y. Cao, Adv. Energy Mater. 2020, 10, 2000743.

[39]

Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, Adv. Mater. 2011, 23, 2226.

[40]

Y. Lin, Y. Zhang, A. Magomedov, E. Gkogkosi, J. Zhang, X. Zheng, A. El-Labban, S. Barlow, V. Getautis, E. Wang, L. Tsetseris, S. R. Marder, I. McCulloch, T. D. Anthopoulos, Mater. Horiz 2023, 10, 1292.

[41]

Y. Lin, Y. Firdaus, F. H. Isikgor, M. I. Nugraha, E. Yengel, G. T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C. T. Howells, O. M. Bakr, I. McCulloch, S. D. Wolf, L. Tsetseris, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 2935.

[42]

Y. Lin, A. Magomedov, Y. Firdaus, D. Kaltsas, A. El-Labban, H. Faber, D. R. Naphade, E. Yengel, X. Zheng, E. Yarali, N. Chaturvedi, K. Loganathan, D. Gkeka, S. H. AlShammari, O. M. Bakr, F. Laquai, L. Tsetseris, V. Getautis, T. D. Anthopoulos, ChemSusChem 2021, 14, 3569.

[43]

A. Ullah, K. H. Park, Y. Lee, S. Park, A. B. Faheem, H. D. Nguyen, Y. Siddique, K.-K. Lee, Y. Jo, C.-H. Han, S. Ahn, I. Jeong, S. Cho, B. Kim, Y. S. Park, S. Hong, Adv. Funct. Mater. 2022, 32, 2208793.

[44]

A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Energ. Environ. Sci. 2019, 12, 3356.

[45]

S.-C. Chien, F.-C. Chen, M.-K. Chung, C.-S. Hsu, J. Phys. Chem. C 2012, 116, 1354.

[46]

Q. Lu, M. Ding, A. Zhou, P. Guo, Q. Wang, D. Li, J. Liang, J. Liang, J. Li, H. Woo, Y. Xia, ACS Appl. Mater. Interfaces 2023, 15, 9773.

[47]

Y. Jiang, L. Sun, F. Jiang, C. Xie, L. Hu, X. Dong, F. Qin, T. Liu, L. Hu, X. Jiang, Y. Zhou, Mater. Horiz 2019, 6, 1438.

[48]

J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Appl. Phys. Lett. 2014, 105, 232109.

[49]

J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 2012, 24, 5408.

[50]

F. H. Isikgor, S. Zhumagali, L. V. T. Merino, M. De Bastiani, I. McCulloch, S. De Wolf, Nat. Rev. Mater. 2023, 8, 89.

[51]

E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennou, S. A. Choulis, Org. Electron. 2009, 10, 61.

[52]

M. Giannouli, V. M. Drakonakis, A. Savva, P. Eleftheriou, G. Florides, S. A. Choulis, ChemPhysChem 2015, 16, 1134.

[53]

Y. Qin, N. Balar, Z. Peng, A. Gadisa, I. Angunawela, A. Bagui, S. Kashani, J. Hou, H. Ade, Joule 2021, 5, 2129.

[54]

I. T Sachs-Quintana, T. Heumüller, W. R. Mateker, D. E. Orozco, R. Cheacharoen, S. Sweetnam, C. J. Brabec, M. D. McGehee, Adv. Funct. Mater. 2014, 24, 3978.

[55]

S. E. Root, M. A. Alkhadra, D. Rodriquez, A. D. Printz, D. J. Lipomi, Chem. Mater. 2017, 29, 2646.

[56]

J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, J. A. Goitia, J. Appl. Phys. 1996, 79, 2745.

[57]

A. Berntsen, Y. Croonen, C. Liedenbaum, H. Schoo, R.-J. Visser, J. Vleggaar, P. van de Weijer, Opt. Mater. 1998, 9, 125.

[58]

H. J. Son, H.-K. Park, J. Y. Moon, B.-K. Ju, S. H. Kim, Sustainable Energy Fuels 2020, 4, 1974.

[59]

H. Bin, J. Wang, J. Li, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2021, 33, 2008429.

[60]

S. A. Salma, Q. A. Khoirun Nisa, R. F. Binti Nasrun, D. H. Son, J. H. Kim, Mater. Today Energy 2023, 35, 101297.

[61]

Z. Kam, X. Wang, J. Zhang, J. Wu, ACS Appl. Mater. Interfaces 2015, 7, 1608.

[62]

J. Jeong, J. Seo, S. Nam, H. Han, H. Kim, T. D. Anthopoulos, D. D. C. Bradley, Y. Kim, Adv. Sci. 2016, 3, 1500269.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/