Atomic-resolution Interfacial Microstructure and Thermo-electro-magnetic Energy Conversion Performance of Gd/Bi0.5Sb1.5Te3 Composites

Chengshan Liu , Wenjie Xu , Ping Wei , Shaoqiu Ke , Wenjun Cui , Longzhou Li , Dong Liang , Xianfeng Ye , Tiantian Chen , Xiaolei Nie , Wanting Zhu , Wenyu Zhao , Qingjie Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12710

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12710 DOI: 10.1002/eem2.12710
RESEARCH ARTICLE

Atomic-resolution Interfacial Microstructure and Thermo-electro-magnetic Energy Conversion Performance of Gd/Bi0.5Sb1.5Te3 Composites

Author information +
History +
PDF

Abstract

Thermo-electro-magnetic materials with simultaneously large magnetocaloric (MC) and thermoelectric (TE) effects are the core part for designing TE/MC all-solid-state cooling devices. Compositing MC phase with TE material is an effective approach. However, the elemental diffusion and chemical reaction occurring at the two-phase interfaces could significantly impair the cooling performance. Herein, Gd/Bi0.5Sb1.5Te3 (Gd/BST) composites were prepared by a low-temperature high-pressure spark plasma sintering method with an aim to control the extent of interfacial reaction. The reaction of Gd with the diffusive Te and the formation of GdTe nanocrystals were identified at the Gd/BST interfaces by the atomic-resolution microscope. The formed BiTe’ antisite defects and enhanced {000 l} preferential orientation in BST are responsible for the increased carrier concentration and mobility, which leads to optimized electrical properties. The heterogeneous interface phases, along with antisite defects, favor the phonon scattering enhancement and lattice thermal conductivity suppression. The optimized composite sintered at 693 K exhibited a maximum ZT of 1.27 at 300 K. Furthermore, the well-controlled interfacial reaction has a slight impact on the magnetic properties of Gd and a high magnetic entropy change is retained in the composites. This work provides a universal approach to fabricating thermo-electro-magnetic materials with excellent MC and TE properties.

Keywords

interfacial reaction / magnetocaloric performance / thermoelectric performance / thermo-electro-magnetic materials

Cite this article

Download citation ▾
Chengshan Liu, Wenjie Xu, Ping Wei, Shaoqiu Ke, Wenjun Cui, Longzhou Li, Dong Liang, Xianfeng Ye, Tiantian Chen, Xiaolei Nie, Wanting Zhu, Wenyu Zhao, Qingjie Zhang. Atomic-resolution Interfacial Microstructure and Thermo-electro-magnetic Energy Conversion Performance of Gd/Bi0.5Sb1.5Te3 Composites. Energy & Environmental Materials, 2024, 7(4): e12710 DOI:10.1002/eem2.12710

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Delmastro, R. Martinez-Gordon, Space Cooling, https://www.iea.org/reports/space-cooling (accessed: July 2023).

[2]

The Future of Cooling, https://www.iea.org/reports/the-future-of-cooling (accessed: May 2018).

[3]

M. Mohanraj, S. Jayaraj, C. Muraleedharan, Int. J. Greenh Gas Con. 2009, 3, 108.

[4]

D. Paliwal, SSRG-IJME. 2017, 4, 2.

[5]

G. J. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.

[6]

V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. Conde, Prog. Mater. Sci. 2018, 93, 112.

[7]

X. L. Shi, J. Zou, Z. G. Chen, Chem. Rev. 2020, 120, 15.

[8]

M. Hamid Elsheikh, D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. Haji Hassan, M. B. Ali Bashir, M. Mohamad, Sust. Energ. Rev. 2014, 30, 337.

[9]

P. MohanKumar, V. J. Babu, A. Subramanian, A. Bandla, N. Thakor, S. Ramakrishna, H. Wei, Sci 2019, 1, 37.

[10]

X. F. Tang, Z. W. Li, W. Liu, Q. J. Zhang, C. Uher, Interdiscip. Mater. 2022, 1, 88.

[11]

W. Sun, W. D. Liu, Q. F. Liu, Z. G. Chen, Chem. Eng. J. 2022, 450, 138389.

[12]

J. M. Ding, W. R. Zhao, W. L. Jin, C. A. Di, D. B. Zhu, Adv. Funct. Mater. 2021, 31, 2010695.

[13]

C. M. Jaworski, V. Kulbachinskii, J. P. Heremans, Phys. Rev. B 2009, 80, 233201.

[14]

M. Tan, X. L. Shi, W. D. Liu, M. Li, Y. L. Wang, H. Li, Y. Deng, Z. G. Chen, Adv. Energy Mater. 2021, 11, 2102578.

[15]

L. P. Hu, T. J. Zhu, X. H. Liu, X. B. Zhao, Adv. Funct. Mater. 2014, 24, 5211.

[16]

Y. Pan, U. Aydemir, J. A. Grovogui, I. T. Witting, R. Hanus, Y. B. Xu, J. S. Wu, C. F. Wu, F. H. Sun, H. L. Zhuang, J. F. Dong, J. F. Li, V. P. Dravid, G. J. Snyder, Adv. Mater. 2018, 30, 1802016.

[17]

B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren, Science 2008, 320, 634.

[18]

K. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.

[19]

J. Pei, B. W. Cai, H. L. Zhuang, J. F. Li, Nati. Sci. Rev. 1856, 2020, 7.

[20]

J. Mao, G. Chen, Z. F. Ren, Nat. Mater. 2021, 20, 454.

[21]

H. M. Huang, J. Shen, Z. X. Li, K. Li, P. Hai, W. S. Zheng, R. J. Huang, W. Dai, Appl. Therm. Eng. 2022, 217, 119056.

[22]

U. Tomc, J. Tušek, A. Kitanovski, A. Poredoš, Appl. Therm. Eng. 2013,

[23]

X. M. Luo, Z. B. Hu, Q. F. Lin, W. W. Cheng, J. P. Cao, C. H. Cui, H. Mei, Y. Song, Y. Xu, J. Am. Chem. Soc. 2018, 140, 11219.

[24]

H. N. Bez, A. T. D. Nakashima, G. B. Lang, B. S. de Lima, A. J. S. Machado, J. A. Lozano, J. R. Barbosa Jr., Int. J. Air Cond. Refri. 2020, 28, 3.

[25]

A. Yan, A. Handstein, P. Kerschl, K. Nenkov, K.-H. Müller, O. Gutfleisch, J. Appl. Phys. 2004, 95, 7064.

[26]

N. H. Dung, N. B. Doan, P. De Rango, L. Ranno, K. C. Sandeman, N. M. Dempsey, J. Appl. Phys. 2020, 127, 215103.

[27]

M. A. Hamad, J. Supercond. Nov. Magn. 2014, 27, 263.

[28]

K. H. Kim, W.-J. Son, S.-J. Kwon, I.-G. Kim, D.-S. Yang, Y.-N. Ham, Electron. Mater. Lett. 2016, 12, 255.

[29]

S. Fabbrici, J. Kamarad, Z. Arnold, F. Casoli, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, G. Porcari, C. Pernechele, F. Albertini, Acta Mater. 2011, 59, 412.

[30]

X. D. Si, Y. L. Shen, X. X. Ma, S. J. Chen, J. Lin, J. Yang, T. Gao, Y. S. Liu, Acta Mater. 2018, 143, 306.

[31]

K. A. Gschneidner Jr., V. K. Pecharsky, A. O. Tsokol, Rep. Prog. Phys. 2005, 68, 1479.

[32]

C. R. H Bahl, K. Engelbrecht, D. Eriksen, J. A. Lozano, R. Bjϕrk, J. Geyti, K. K. Nielsen, A. Smith, N. Pryds, Int. J. Refrig. 2014, 37, 78.

[33]

A. Kitanovski, P. W. Egolf, Int. J. Refrig. 2010, 33, 449.

[34]

W. de Vries, T. H. van der Meer, Appl. Therm. Eng. 2017, 111, 377.

[35]

U. L. Olsen, C. R. H. Bahl, K. Engelbrecht, K. K. Nielsen, Y. Tasaki, H. Takahashi, Int. J. Refrig. 2014, 37, 194.

[36]

B. Monfared, Int. J. Refrig. 2017, 74, 324.

[37]

J. H. Wu, B. W. Lu, C. P. Liu, J. He, Appl. Therm. Eng. 2018, 137, 836.

[38]

B. W. Lu, J. H. Wu, J. He, J. H. Huang, Int. J. Refrig. 2019, 98, 42.

[39]

L. Xing, W. J. Cui, X. H. Sang, F. X. Hu, P. Wei, W. T. Zhu, X. L. Nie, Q. J. Zhang, W. Y. Zhao, J. Mater. 2021, 7, 998.

[40]

L. Z. Li, P. Wei, B. Ke, X. L. Nie, W. T. Zhu, W. Y. Zhao, Q. J. Zhang, Mater Charact 2023, 199, 112760.

[41]

W. K. Hou, X. L. Nie, W. Y. Zhao, H. Y. Zhou, X. Mu, W. T. Zhu, Q. J. Zhang, Nano Energy 2018, 50, 766.

[42]

J. H. Qiu, Y. G. Yan, T. T. Luo, K. C. Tang, L. Yao, J. Zhang, M. Zhang, X. L. Su, G. J. Tan, H. Y. Xie, M. G. Kanatzidis, C. Uher, X. F. Tang, Energ. Environ. Sci. 2019, 12, 3106.

[43]

P. Wei, B. Ke, L. Xing, C. C. Li, S. F. Ma, X. L. Nie, W. T. Zhu, X. H. Sang, Q. J. Zhang, G. Van Tendeloo, W. Y. Zhao, Mater Charact 2020, 163, 110240.

[44]

Y. X. Zhang, Q. Lou, Z. H. Ge, S. W. Gu, J. X. Yang, J. Guo, Y. K. Zhu, Y. Zhou, X. H. Yu, J. Feng, J. Q. He, Acta Mater. 2022, 233, 117972.

[45]

M. Zhang, W. Liu, C. Zhang, S. Xie, F. Q. Hua, F. Yan, R. Cheng, J. F. Luo, W. Wang, H. Sang, H. R. Ge, Z. H. Wang, Q. R. Tao, H. Bai, H. Luo, J. S. Wu, X. F. Tang, Appl. Phys. Lett. 2021, 118, 103901.

[46]

J. Lyubina, J. Phys. D Appl. Phys. 2017, 50, 53002.

[47]

G. Y. Lu, Y. S. Du, X. F. Wu, L. Ma, L. Li, G. Cheng, J. Wang, J. T. Zhao, G. H. Rao, J. Alloys Compd. 2022, 906, 164343.

[48]

V. Franco, J. S. Blázquez, B. Ingale, A. Conde, Annu. Rev. Mat. Res. 2012, 42, 305.

[49]

Y. J. Yan, C. S. Liu, W. C. Lu, Y. Sun, W. T. Zhu, X. L. Nie, X. H. Sang, W. Y. Zhao, Q. J. Zhang, J. Alloys Compd. 2022, 910, 164858.

[50]

X. Q. Cai, Z. C. Lu, Z. L. Xu, F. Q. Meng, Q. H. Zhang, L. Gu, J. Feng, S. H. Ji, N. Li, X. Chen, J. Phys. Chem. C 2021, 125, 15465.

[51]

W. G. Yan, X. L. Nie, S. Q. Ke, Y. Hu, X. L. Ai, W. T. Zhu, W. Y. Zhao, Q. J. Zhang, Adv. Funct. Mater. 2022, 32, 2209739.

[52]

Y. K. Zhu, Y. F. Jin, J. B. Zhu, X. Y. Dong, M. Liu, Y. X. Sun, M. C. Guo, F. S. Li, F. K. Guo, Q. Zhang, Z. H. Liu, W. Cai, J. H. Sui, Adv. Sci. 2023, 10, 2206395.

[53]

C. Gayner, K. K. Kar, Prog. Mater. Sci. 2016, 83, 330.

[54]

L. Yang, Z. G. Chen, M. S. Dargusch, J. Zou, Adv. Energy Mater. 2018, 8, 1701797.

[55]

C. C. Li, S. F. Ma, P. Wei, W. T. Zhu, X. L. Nie, X. H. Sang, Z. G. Sun, Q. J. Zhang, W. Y. Zhao, Energ. Environ. Sci. 2020, 13, 535.

[56]

S. F. Ma, C. C. Li, P. Wei, W. T. Zhu, X. L. Nie, X. H. Sang, Q. J. Zhang, W. Y. Zhao, J. Mater. Chem. A 2020, 8, 4816.

[57]

W. Y. Zhao, Z. Y. Liu, Z. G. Sun, Q. J. Zhang, P. Wei, X. Mu, H. Y. Zhou, C. C. Li, S. F. Ma, D. Q. He, P. X. Ji, W. T. Zhu, X. L. Nie, X. L. Su, X. F. Tang, B. G. Shen, X. L. Dong, J. H. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247.

[58]

H. S. Kim, Z. M. Gibbs, Y. L. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 41506.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/