Two-Dimensional Metallophthalocyanine Nanomaterials for Electrocatalytic Energy Conversion

Xinqi Wang , Shaohui Sun , Jiahao Yao , Hao Wan , Renzhi Ma , Wei Ma

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12709

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12709 DOI: 10.1002/eem2.12709
REVIEW

Two-Dimensional Metallophthalocyanine Nanomaterials for Electrocatalytic Energy Conversion

Author information +
History +
PDF

Abstract

Growing energy demand drives the rapid development of clean and reliable energy sources. In the past years, the exploration of novel materials with considerable efficiency and durability has drawn attention in the area of electrochemical energy conversion. Transition metal macrocyclic metallophthalocyanines (MPcs)-based catalysts with a peculiar 2D constitution have emerged with a promising future account of their highly structural tailorability and molecular functionality which greatly extend their functionalities as electrocatalytic materials for energy conversion. This review summarizes the systematic engineering of synthesis of MPcs and their analogs in detail, and mostly pays attention to the frontier research of MPc-based high-performance catalysts toward different electrocatalytic processes concerning hydrogen, oxygen, water, carbon dioxide, and nitrogen, with a particular focus on discussing the interrelationship between the electrocatalytic activity and component/structure, as well as functional applications of MPcs. Finally, we give the gaps that need to be addressed after much thought.

Keywords

conjugated nanostructure / electrocatalysis / 2D metallophthalocyanines

Cite this article

Download citation ▾
Xinqi Wang, Shaohui Sun, Jiahao Yao, Hao Wan, Renzhi Ma, Wei Ma. Two-Dimensional Metallophthalocyanine Nanomaterials for Electrocatalytic Energy Conversion. Energy & Environmental Materials, 2024, 7(4): e12709 DOI:10.1002/eem2.12709

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.

[2]

N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.

[3]

Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577.

[4]

H. Wan, L. Hu, X. Liu, Y. Zhang, G. Chen, N. Zhang, R. Ma, Chem. Sci. 2023, 14, 2776.

[5]

J. N. Hansen, H. Prats, K. K. Toudahl, N. Mørch Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175.

[6]

R. Venegas, K. Muñoz-Becerra, C. Candia-Onfray, J. F. Marco, J. H. Zagal, F. J. Recio, Electrochim. Acta 2020, 332, 135340.

[7]

B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao, Energ. Environ. Sci. 2020, 13, 1096.

[8]

J. Pan, Y. Y. Xu, H. Yang, Z. Dong, H. Liu, B. Y. Xia, Adv. Sci. 2018, 5, 1700691.

[9]

V. Aravindan, Y.-S. Lee, S. Madhavi, Adv. Energy Mater. 2015, 5, 1402225.

[10]

R. G. Grim, Z. Huang, M. T. Guarnieri, J. R. Ferrell, L. Tao, J. A. Schaidle, Energ. Environ. Sci. 2020, 13, 472.

[11]

J. H. Zagal, Coord. Chem. Rev. 1992, 119, 89.

[12]

W. Liu, Y. Hou, H. Pan, W. Liu, D. Qi, K. Wang, J. Jiang, X. Yao, J. Mater. Chem. A 2018, 6, 8349.

[13]

S. Wang, L.-H. Deng, Y.-F. Du, X.-L. Song, Fuel 2022, 315, 123227.

[14]

S. Baranton, C. Coutanceau, C. Roux, F. Hahn, J. M. Léger, J. Electroanal. Chem. 2005, 577, 223.

[15]

M. F. Craciun, S. Rogge, A. F. Morpurgo, J. Am. Chem. Soc. 2005, 127, 12210.

[16]

S. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Chem. Soc. Rev. 2021, 50, 12985.

[17]

D. Liu, Y.-T. Long, ACS Appl. Mater. Interfaces 2015, 7, 24063.

[18]

N. Komba, G. Zhang, Q. Wei, X. Yang, J. Prakash, R. Chenitz, F. Rosei, S. Sun, Int. J. Hydrogen Energy 2019, 44, 18103.

[19]

W. Zhu, F. Xia, Y. Niu, X. Liang, New J. Chem. 2020, 44, 21108.

[20]

A. Arul, H. Pak, K. U. Moon, M. Christy, M. Y. Oh, K. S. Nahm, Appl Catal B 2018, 220, 488.

[21]

C. He, Z.-Y. Wu, L. Zhao, M. Ming, Y. Zhang, Y. Yi, J.-S. Hu, ACS Catal. 2019, 9, 7311.

[22]

N. Safari, P. R. Jamaat, S. A. Shirvan, S. Shoghpour, A. Ebadi, M. Darvishi, A. Shaabani, J. Porphyr, Phthalocyanines 2005, 9, 256.

[23]

K. Sakamoto, E. Ohno-Okumura, Materials 2009, 2, 1127.

[24]

J. H. Zagal, S. Griveau, J. F. Silva, T. Nyokong, F. Bedioui, Coord. Chem. Rev. 2010, 254, 2755.

[25]

N. Kobayashi, Dimers. Coord. Chem. Rev. 2002, 227, 129.

[26]

H. Lu, N. Kobayashi, Chem. Rev. 2016, 116, 6184.

[27]

T. Nyokong, J. Porphyr, Phthalocyanines 2020, 24, 1300.

[28]

A. Koca, A. Kalkan, Z. A. Bayır, Electrochim. Acta 2011, 56, 5513.

[29]

Ö. Bekaroğlu, Funct. Phthalocyanine Mol. Mater 2010, 135, 105.

[30]

A. Sukhikh, D. Bonegardt, D. Klyamer, T. Basova, Dyes Pigments 2021, 192, 109442.

[31]

O. A. Melville, B. H. Lessard, T. P. Bender, ACS Appl. Mater. Interfaces 2015, 7, 13105.

[32]

M. Musilová, J. Mrha, J. Jindra, J. Appl. Electrochem. 1973, 3, 213.

[33]

R. Jasinski, Nature 1964, 201, 1212.

[34]

A. L. Thomas, Phthalocyanine Research and Applications , CRC Press, Florida 1990.

[35]

T. Nyokong, Coord. Chem. Rev. 2007, 251, 1707.

[36]

C. Z. Loyola, G. Abarca, S. Ureta-Zañartu, C. Aliaga, J. H. Zagal, M. T. Sougrati, F. Jaouen, W. Orellana, F. Tasca, J. Mater. Chem. A 2021, 9, 23802.

[37]

F. H. Moser, A. L. Thomas, The phthalocyanines , CRC Press, Boca Raton 1983.

[38]

Y. S. Korostei, V. G. Tarasova, V. E. Pushkarev, N. E. Borisova, A. K. Vorobiev, L. G. Tomilova, Dyes Pigments 2018, 159, 573.

[39]

T. Jiang, C. Ou, L. Wang, J. Chen, S. Dmytro, Q. Zhang, J. Luo, H. Wang, J. Rare Earths 2022,

[40]

N. B. Mckeown, Phthalocyanine materials: Synthesis, structure and function, an introduction to the phthalocyanine, Cambridge University Press, Cambridge 1998.

[41]

S. C. Mathur, J. Singh, Int. J. Quantum Chem. 1972, 6, 57.

[42]

B. Ortiz, J. Electrochem. Soc. 1996, 143, 1800.

[43]

H. A. R Aliabad, M. Bashi, J. Mater. Sci. Mater. Electron. 2019, 30, 18720.

[44]

J. Chen, K. Zou, P. Ding, J. Deng, C. Zha, Y. Hu, X. Zhao, J. Wu, J. Fan, Y. Li, Adv. Mater. 2019, 31, 1805484.

[45]

H. Wu, M. Zeng, X. Zhu, C. Tian, B. Mei, Y. Song, X.-L. Du, Z. Jiang, L. He, C. Xia, S. Dai, ChemElectroChem 2018, 5, 2717.

[46]

R. Matheu, E. Gutierrez-Puebla, M. Á. Monge, C. S. Diercks, J. Kang, M. S. Prevot, X. Pei, N. Hanikel, B. Zhang, P. Yang, O. M. Yaghi, J. Am. Chem. Soc. 2019, 141, 17081.

[47]

B. Ortiz, S. M. Park, N. Doddapaneni, J. Electrochem. Soc. 1800, 1996, 143.

[48]

C. G. Claessens, U. Hahn, T. Torres, Chem. Rec. 2008, 8, 75.

[49]

Z. Liu, C. Liu, Z. Chen, H. Huang, Y. Liu, L. Xue, J. Sun, X. Wang, P. Xiong, J. Zhu, Exp. Dermatol. 2023, 3, 20220061.

[50]

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.

[51]

N. Farajzadeh, D. Akyüz, A. Koca, M. B. Koçak, Monatsh. Chem. 2020, 151, 1337.

[52]

J. Wei, X. Li, C. Xiao, F. Lu, Vib. Spectrosc. 2017, 92, 105.

[53]

G. Z. Anuj Kumar, J. Electroanal. Chem. 2022, 922, 116799.

[54]

H. Li, X. Han, S. Jiang, L. Zhang, W. Ma, R. Ma, Z. Zhou, Green Energy Environ. 2022, 7, 314.

[55]

K. Greulich, A. Belser, S. Bölke, P. Grüninger, R. Karstens, M. S. Sättele, R. Ovsyannikov, E. Giangrisostomi, T. V. Basova, D. Klyamer, T. Chassé, H. Peisert, J. Phys. Chem. C 2020, 124, 16990.

[56]

Z. Zhang, M. Dou, J. Ji, F. Wang, Nano Energy 2017, 34, 338.

[57]

Y. Li, R. Zhang, Y. Cheng, H. Tang, Mater. Today Sustain. 2022, 20, 100249.

[58]

Y. Jiang, Y. Lu, X. Lv, D. Han, Q. Zhang, L. Niu, W. Chen, ACS Catal. 2013, 3, 1263.

[59]

K. Irisa, K. Hatakeyama, S. Yoshimoto, M. Koinuma, S. Ida, RSC Adv. 2021, 11, 15927.

[60]

J. Choi, P. Wagner, S. Gambhir, R. Jalili, D. R. MacFarlane, G. G. Wallace, D. L. Officer, ACS Energy Lett. 2019, 4, 666.

[61]

J. Li, Y. Tang, H. Wang, C. Wang, J. Tian, D. Liu, C. M. Li, C. Guo, Int. J. Hydrogen Energy 2022, 47, 9905.

[62]

I. S. Kwon, I. H. Kwak, J. Y. Kim, H. G. Abbas, T. T. Debela, J. Seo, M. K. Cho, J. P. Ahn, J. Park, H. S. Kang, Nanoscale 2019, 11, 14266.

[63]

X. Zhang, R. Lin, X. Meng, W. Li, F. Chen, J. Hou, Inorg. Chem. 2021, 60, 9987.

[64]

G. Galeotti, F. De Marchi, E. Hamzehpoor, O. MacLean, M. Rajeswara Rao, Y. Chen, L. V. Besteiro, D. Dettmann, L. Ferrari, F. Frezza, P. M. Sheverdyaeva, R. Liu, A. K. Kundu, P. Moras, M. Ebrahimi, M. C. Gallagher, F. Rosei, D. F. Perepichka, G. Contini, Nat. Mater. 2020, 19, 874.

[65]

N. B. McKeown, J. Mater. Chem. 2000, 10, 1979.

[66]

H. Lyu, C. S. Diercks, C. Zhu, O. M. Yaghi, J. Am. Chem. Soc. 2019, 141, 6848.

[67]

R.-R. Liang, S.-Y. Jiang, A. Ru-Han, X. Zhao, Chem. Soc. Rev. 2020, 49, 3920.

[68]

M. Wang, M. Ballabio, M. Wang, H.-H. Lin, B. P. Biswal, X. Han, S. Paasch, E. Brunner, P. Liu, M. Chen, M. Bonn, T. Heine, S. Zhou, E. Cánovas, R. Dong, X. Feng, J. Am. Chem. Soc. 2019, 141, 16810.

[69]

J. Wang, N. Li, Y. Xu, H. Pang, Chem. A Eur. J. 2020, 26, 6402.

[70]

O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.

[71]

R. Zhou, Y. Huang, Z. Li, S. Kang, X. Wang, S. Liu, Energy Stor. Mater. 2021, 40, 124.

[72]

Y. Yue, P. Cai, K. Xu, H. Li, H. Chen, H. C. Zhou, N. Huang, J. Am. Chem. Soc. 2021, 143, 18052.

[73]

M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Chem. Soc. Rev. 2018, 47, 6267.

[74]

Y. Li, W. Chen, G. Xing, D. Jiang, L. Chen, Chem. Soc. Rev. 2020, 49, 2852.

[75]

M. Wang, H. Shi, P. Zhang, Z. Liao, M. Wang, H. Zhong, F. Schwotzer, A. S. Nia, E. Zschech, S. Zhou, S. Kaskel, R. Dong, X. Feng, Adv. Funct. Mater. 2020, 30, 2002664.

[76]

S. Yang, Y. Yu, M. Dou, Z. Zhang, F. Wang, J. Am. Chem. Soc. 2020, 142, 17524.

[77]

W. Liu, C. Wang, L. Zhang, H. Pan, W. Liu, J. Chen, D. Yang, Y. Xiang, K. Wang, J. Jiang, X. Yao, J. Mater. Chem. A 2019, 7, 3112.

[78]

Y. Tao, W. Ji, X. Ding, B.-H. Han, J. Mater. Chem. A 2021, 9, 7336.

[79]

D. Rodríguez-San-Miguel, C. Montoro, F. Zamora, Chem. Soc. Rev. 2020, 49, 2291.

[80]

J. D. Yi, D. H. Si, R. Xie, Q. Yin, M. D. Zhang, Q. Wu, G. L. Chai, Y.-B. Huang, Angew. Chem. Int. Ed. 2021, 60, 17108.

[81]

K. Selvaraju, G. A. Babu, Ionics (Kiel) 2019, 25, 5939.

[82]

J. Ge, J. Y. Zheng, J. Zhang, S. Jiang, L. Zhang, H. Wan, L. Wang, W. Ma, Z. Zhou, R. Ma, J. Mater. Chem. A 2021, 9, 14432.

[83]

Z. Wang, J. Zhu, S. Xu, Y. Zhang, B. Van der Bruggen, J. Membr. Sci. 2021, 663, 119397.

[84]

S. Fukuzumi, Y.-M. Lee, ChemSusChem 2017, 10, 4264.

[85]

E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nat. Commun. 2011, 2, 416.

[86]

A. Friedman, M. Mizrahi, N. Levy, N. Zion, M. Zachman, L. Elbaz, ACS Appl. Mater. Interfaces 2021, 13, 58532.

[87]

M. T. M Koper, Chem. Sci. 2013, 4, 2710.

[88]

X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong, Z. Liu, ACS Catal. 2015, 5, 4643.

[89]

S. Sun, N. Jiang, D. Xia, J. Phys. Chem. C 2011, 115, 9511.

[90]

J. Wang, H. Kong, J. Zhang, Y. Hao, Z. Shao, F. Ciucci, Prog. Mater. Sci. 2021, 116, 100717.

[91]

A. Liu, W. Guan, K. Wu, X. Ren, L. Gao, T. Ma, Appl. Surf. Sci. 2021, 540, 148319.

[92]

S. Yuan, J. Peng, Y. Zhang, D. J. Zheng, S. Bagi, T. Wang, Y. Román-Leshkov, Y. Shao-Horn, ACS Catal. 2022, 12, 7278.

[93]

M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev. 2018, 118, 2340.

[94]

J. H. Zagal, M. T. M. Koper, Angew. Chem. Int. Ed. 2016, 55, 14510.

[95]

C. Wang, L. Ma, L. Liao, S. Bai, R. Long, M. Zuo, Y. Xiong, Sci. Rep. 2013, 3, 2580.

[96]

Z. Zhang, S. Yang, M. Dou, H. Liu, L. Gu, F. Wang, RSC Adv. 2016, 6, 67049.

[97]

C. Aleksei, S. Chengyi, T. Peng, S. Wen, D. Tao, W. Jianbo, Prog. Nat. Sci. 2020, 30, 289.

[98]

M. H. Seo, D. Higgins, G. Jiang, S. M. Choi, B. Han, Z. Chen, J. Mater. Chem. A 2014, 2, 19707.

[99]

L. Li, X. Tang, S. Huang, C. Lu, D. Lützenkirchen-Hecht, K. Yuan, X. Zhuang, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202301642.

[100]

Y. Hong, L. Li, B. Huang, X. Tang, W. Zhai, T. Hu, K. Yuan, Y. Chen, Adv. Energy Mater. 2021, 11, 2100866.

[101]

X. Zhong, L. Liu, X. Wang, H. Yu, G. Zhuang, D. Mei, X. Li, J.-G. Wang, J. Mater. Chem. A 2014, 2, 6703.

[102]

K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y.-R. Lu, T.-S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.

[103]

H. Zhong, K. H. Ly, M. Wang, Y. Krupskaya, X. Han, J. Zhang, J. Zhang, V. Kataev, B. Buchner, I. M. Weidinger, S. Kaskel, P. Liu, M. Chen, R. Dong, X. Feng, Angew. Chem. Int. Ed. 2019, 58, 10677.

[104]

K. M. Zhao, S. Liu, Y. Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z. Y. Zhou, S. G. Sun, Adv. Energy Mater. 2022, 12, 2103588.

[105]

W.-Z. Cheng, J.-L. Liang, H.-B. Yin, Y.-J. Wang, W.-F. Yan, J.-N. Zhang, Rare Metals 2020, 39, 815.

[106]

C. Sun, Z. Li, J. Yang, S. Wang, X. Zhong, L. Wang, Catal. Today 2020, 353, 279.

[107]

L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater. 2019, 9, 1803358.

[108]

S. Yang, Y. Yu, M. Dou, Z. Zhang, L. Dai, F. Wang, Angew. Chem. Int. Ed. 2019, 58, 14724.

[109]

Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Adv. Energy Mater. 2017, 7, 1700544.

[110]

P. Gono, A. Pasquarello, J. Chem. Phys. 2020, 152, 104712.

[111]

W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energ. Environ. Sci. 2015, 8, 1404.

[112]

J. Zhang, H. B. Yang, D. Zhou, B. Liu, Chem. Rev. 2022, 122, 17028.

[113]

A. Papaderakis, D. Tsiplakides, S. Balomenou, S. Sotiropoulos, J. Electroanal. Chem. 2015, 757, 216.

[114]

X. Zhang, X. Li, W. Wang, Z. Yang, Surf. Sci. 2022, 717, 122000.

[115]

S. Aralekallu, V. A. Sajjan, M. Palanna, C. P. Prabhu, M. Hojamberdiev, L. K. Sannegowda, J. Power Sources 2020, 449, 227516.

[116]

C. Li, T. Huang, Z. Huang, J. Sun, C. Zong, J. Yang, W. Deng, F. Dai, Dalton Trans. 2019, 48, 17258.

[117]

H. Jia, Y. Yao, J. Zhao, Y. Gao, Z. Luo, P. Du, J. Mater. Chem. A 2018, 6, 1188.

[118]

D. Qi, X. Chen, W. Liu, C. Liu, W. Liu, K. Wang, J. Jiang, Inorg. Chem. Front. 2020, 7, 642.

[119]

Y. Zang, D. Q. Lu, K. Wang, B. Li, P. Peng, Y. Q. Lan, S. Q. Zang, Nat. Commun. 2023, 14, 1792.

[120]

J. Li, P. Liu, J. Mao, J. Yan, W. Song, J. Mater. Chem. A 2021, 9, 1623.

[121]

J. Li, P. Liu, J. Mao, J. Yan, W. Song, J. Mater. Chem. A 2021, 9, 11248.

[122]

Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1781.

[123]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[124]

Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.

[125]

A. Wang, C. Li, J. Zhang, X. Chen, L. Cheng, W. Zhu, J. Colloid Interface Sci. 2019, 556, 159.

[126]

G. R. Monama, S. B. Mdluli, G. Mashao, M. D. Makhafola, K. E. Ramohlola, K. M. Molapo, M. J. Hato, K. Makgopa, E. I. Iwuoha, K. D. Modibane, Renew. Energy 2018, 119, 62.

[127]

J. Safaei, P. Xiong, G. Wang, Mater. Today Adv. 2020, 8, 100108.

[128]

L. Sun, V. Reddu, A. C. Fisher, X. Wang, Energ. Environ. Sci. 2020, 13, 374.

[129]

C. Costentin, M. Robert, J. Savéant, Chem. Soc. Rev. 2013, 42, 2423.

[130]

Z. Yue, C. Ou, N. Ding, L. Tao, J. Zhao, J. Chen, ChemCatChem 2020, 12, 6103.

[131]

J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal. 2017, 7, 4822.

[132]

J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631.

[133]

J.-J. Ma, H.-L. Zhu, Y.-Q. Zheng, M. Shui, ACS Appl. Energy Mater. 2021, 4, 1442.

[134]

Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732.

[135]

H. A. Hansen, J. B. Varley, A. A. Peterson, J. K. Nørskov, J. Phys. Chem. Lett. 2013, 4, 388.

[136]

D. L. T Nguyen, Y. Kim, Y. J. Hwang, D. H. Won, Carbon Energy 2020, 2, 72.

[137]

X. Yang, J. Cheng, X. Xuan, N. Liu, J. Liu, ACS Sustain. Chem. Eng. 2020, 8, 10536.

[138]

X. Wang, Y. Fu, D. Tranca, K. Jiang, J. Zhu, J. Zhang, S. Han, C. Ke, C. Lu, X. Zhuang, ACS Appl. Energy Mater. 2021, 4, 2891.

[139]

J. Wang, X. Huang, S. Xi, J.-M. Lee, C. Wang, Y. Du, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 13532.

[140]

C. L. Yao, J. C. Li, W. Gao, Q. Jiang, Chem. A Eur. J. 2018, 24, 11051.

[141]

N. Huang, K. H. Lee, Y. Yue, X. Xu, S. Irle, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 16587.

[142]

M. Lu, M. Zhang, C. G. Liu, J. Liu, L. J. Shang, M. Wang, J. N. Chang, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2021, 60, 4864.

[143]

M. D. Zhang, D. H. Si, J. D. Yi, S. S. Zhao, Y. B. Huang, R. Cao, Small 2020, 16, 2005254.

[144]

B. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, J. Am. Chem. Soc. 2021, 143, 7104.

[145]

Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun. 2018, 9, 415.

[146]

X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 2021, 143, 7242.

[147]

X. F. Qiu, J. R. Huang, C. Yu, Z. H. Zhao, H. L. Zhu, Z. Ke, P. Q. Liao, X. M. Chen, Angew. Chem. Int. Ed. 2022, 61, e202206470.

[148]

S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 2018, 1, 490.

[149]

S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 2013, 38, 14576.

[150]

E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys. 2012, 14, 1235.

[151]

X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.

[152]

H. Liu, Chin. J. Catal. 2014, 35, 1619.

[153]

Y. Abghoui, E. Skúlasson, Proc. Comp. Sci. 2015, 5, 1897.

[154]

N. Morlanés, W. Almaksoud, R. K. Rai, S. Ould-Chikh, M. M. Ali, B. Vidjayacoumar, B. E Al-Sabban, K. Albahily, J.-M. Basset, Cat. Sci. Technol. 2020, 10, 844.

[155]

T. Xu, B. Ma, J. Liang, L. Yue, X. Sun, Recent Acta Phys. Chim. Sin. 2021, 37, 2009043.

[156]

S. Murmu, S. Paul, A. Santra, M. Robert, U. K. Ghorai, Catal. Today 2022, 423, 113938.

[157]

S. Xu, Y. Ding, J. Du, Y. Zhu, G. Liu, Z. Wen, X. Liu, Y. Shi, H. Gao, L. Sun, F. Li, ACS Catal. 2022, 12, 5502.

[158]

M. Jiang, L. Han, P. Peng, Y. Hu, Y. Xiong, C. Mi, Z. Tie, Z. Xiang, Z. Jin, Nano Lett. 2022, 22, 372.

[159]

F. Yao, C. Fang, J. Cui, L. Dai, X. Zhang, L. Xue, P. Xiong, Y. Fu, W. Zhang, J. Sun, J. Zhu, Natl. Sci. Open 2023, 2, 20220032.

[160]

G.-B. Wang, S. Li, C.-X. Yan, F.-C. Zhu, Q.-Q. Lin, K.-H. Xie, Y. Geng, Y.-B. Dong, J. Mater. Chem. A 2020, 8, 6957.

[161]

N. Keller, T. Bein, Chem. Soc. Rev. 2021, 50, 1813.

[162]

H. Yang, D. Yang, Y. Zhou, X. Wang, J. Am. Chem. Soc. 2021, 143, 13721.

[163]

Y. Deng, Y. Wang, X. Xiao, B. J. Saucedo, Z. Zhu, M. Xie, X. Xu, K. Yao, Y. Zhai, Z. Zhang, J. Chen, Small 2022, 18, 2202928.

[164]

P. Xiong, Y. Wu, Y. Liu, R. Ma, T. Sasaki, X. Wang, J. Zhu, Energ. Environ. Sci. 2020, 13, 4834.

[165]

X. Huang, C. Sun, X. Feng, Sci. China Chem. 2020, 63, 1367.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/