Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries

Yongchao Kang , Feng Zhang , Houzhen Li , Wangran Wei , Huitong Dong , Hao Chen , Yuanhua Sang , Hong Liu , Shuhua Wang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12707

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12707 DOI: 10.1002/eem2.12707
RESEARCH ARTICLE

Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety; however, their applications are restricted by their poor low-temperature performance. Herein, a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO4)2. The diglyme disrupts the hydrogen-bonding network of water and lowers the freezing point of the electrolyte to -105 °C. The designed electrolyte achieves ionic conductivity up to 16.18 mS cm-1 at -45 °C. The diglyme and ClO4- reconfigure the solvated structure of Zn2+, which is more favorable for the desolvation of Zn2+ at low temperatures. In addition, the diglyme effectively suppresses the dendrites, hydrogen evolution reaction, and by-products of the zinc anode, improving the cycle stability of the battery. At -20 °C, a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm-2 and 1 mA h cm-2, and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10 000 times. This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.

Keywords

aqueous zinc-ion batteries / high performance / inner solvation structure / low polarity co-solvent / low-temperature electrolyte

Cite this article

Download citation ▾
Yongchao Kang, Feng Zhang, Houzhen Li, Wangran Wei, Huitong Dong, Hao Chen, Yuanhua Sang, Hong Liu, Shuhua Wang. Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12707 DOI:10.1002/eem2.12707

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[2]

D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.

[3]

J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415.

[4]

H. Z. Dou, M. Xu, B. Y. Wang, Z. Zhang, G. B. Wen, Y. Zheng, D. Luo, L. Zhao, A. P. Yu, L. H. Zhang, Z. Y. Jiang, Z. W. Chen, Chem. Soc. Rev. 2021, 50, 986.

[5]

M. Li, X. P. Wang, J. S. Hu, J. X. Zhu, C. J. Niu, H. Z. Zhang, C. Li, B. K. Wu, C. H. Han, L. Q. Mai, Angew. Chem. Int. Ed. 2023, 62, e202215552.

[6]

K. J. Zhu, Z. Q. Sun, Z. P. Li, P. Liu, H. X. Li, L. F. Jiao, Adv. Energy Mater. 2023, 13, 2203708.

[7]

M. Li, Z. L. Li, X. P. Wang, J. S. Meng, X. Liu, B. K. Wu, C. H. Han, L. Q. Mai, Energy Environ. Sci. 2021, 14, 3796.

[8]

Z. X. Pei, Z. W. Yuan, C. J. Wang, S. L. Zhao, J. Y. Fei, L. Wei, J. S. Chen, C. Wang, R. J. Qi, Z. W. Liu, Y. Chen, Angew. Chem. 2020, 132, 4823.

[9]

F. N. Mo, G. J. Liang, Q. Q. Meng, Z. X. Liu, H. F. Li, J. Fan, C. Y. Zhi, Energy Environ. Sci. 2019, 12, 706.

[10]

Y. C. Yan, S. D. Duan, B. Liu, S. W. Wu, Y. Alsaid, B. W. Yao, S. Nandi, Y. J. Du, T. W. Wang, Y. Z. Li, X. M. He, Adv. Mater. 2023, 35, 2211673.

[11]

M. H. Chen, S. A. Xie, X. Y. Zhao, W. H. Zhou, Y. Li, J. W. Zhang, Z. Chen, D. L. Chao, Energy Storage Mater. 2022, 51, 683.

[12]

T. Jin, X. Ji, P. F. Wang, K. J. Zhu, J. X. Zhang, L. S. Cao, L. Chen, C. Y. Cui, T. Deng, S. F. Liu, N. Piao, Y. C. Liu, C. Shen, K. Y. Xie, L. F. Jiao, C. S. Wang, Angew. Chem. Int. Ed. 2021, 60, 11943.

[13]

Q. Zhang, Y. L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat. Commun. 2020, 11, 10.

[14]

S. Y. Cai, X. Y. Chu, C. Liu, H. W. Lai, H. Chen, Y. Q. Jiang, F. Guo, Z. K. Xu, C. S. Wang, C. Gao, Adv. Mater. 2021, 33, 2007470.

[15]

H. R. Du, X. Q. Qi, L. Qie, Y. H. Huang, Adv. Funct. Mater. 2023, 33, 2302546.

[16]

N. N. Chang, T. Y. Li, R. Li, S. N. Wang, Y. B. Yin, H. M. Zhang, X. F. Li, Energy Environ. Sci. 2020, 13, 3527.

[17]

Q. Y. Ma, R. Gao, Y. Z. Liu, H. Z. Dou, Y. Zheng, T. Or, L. X. Yang, Q. Y. Li, Q. Cu, R. F. Feng, Z. Zhang, Y. H. Nie, B. H. Ren, D. Luo, X. Wang, A. P. Yu, Z. W. Chen, Adv. Mater. 2022, 34, 2207344.

[18]

Q. S. Nian, J. Y. Wang, S. Liu, T. J. Sun, S. B. Zheng, Y. Zhang, Z. L. Tao, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 16994.

[19]

C. L. You, R. Y. Wu, X. H. Yuan, L. L. Liu, J. L. Ye, L. J. Fu, P. Han, Y. P. Wu, Energy Environ. Sci. 2023, 16, 5096.

[20]

T. C. Li, Y. Lim, X. L. Li, S. Z. Luo, C. J. Lin, D. L. Fang, S. W. Xia, Y. Wang, H. Y. Yang, Adv. Energy Mater. 2022, 12, 2103231.

[21]

F. W. Ming, Y. P. Zhu, G. Huang, A. H. Emwas, H. F. Liang, Y. Cui, H. N. Alshareef, J. Am. Chem. Soc. 2022, 144, 7160.

[22]

X. Shi, J. Wang, F. Yang, X. Q. Liu, Y. X. Yu, X. H. Lu, Adv. Funct. Mater. 2023, 33, 2211917.

[23]

Y. Dong, N. Zhang, Z. D. Wang, J. H. Li, Y. X. Ni, H. L. Hu, F. Y. Cheng, J. Energy Chem. 2023, 83, 324.

[24]

Z. Hou, Z. H. Lu, Q. W. Chen, B. Zhang, Energy Storage Mater. 2021, 42, 517.

[25]

V. M. Wallace, N. R. Dhumal, F. M. Zehentbauer, H. J. Kim, J. Kiefer, J. Phys. Chem. B 2015, 119, 14780.

[26]

Y. Shi, R. Wang, S. S. Bi, M. Yang, L. L. Liu, Z. Q. Niu, Adv. Funct. Mater. 2023, 33, 2214546.

[27]

Y. Ma, Q. Zhang, L. Liu, Y. Li, H. Li, Z. Yan, J. Chen, Natl. Sci. Rev. 2022, 9, nwac051.

[28]

C. L. Song, Z. S. Gong, C. Bai, F. S. Cai, Z. H. Yuan, X. Z. Liu, Nano Res. 2022, 15, 3170.

[29]

S. W. Huang, L. Hou, T. Y. Li, Y. C. Jiao, P. Y. Wu, Adv. Mater. 2022, 34, 2110140.

[30]

L. C. Miao, R. H. Wang, W. L. Xin, L. Zhang, Y. H. Geng, H. L. Peng, Z. C. Yan, D. T. Jiang, Z. F. Qian, Z. Q. Zhu, Energy Storage Mater. 2022, 49, 445.

[31]

F. Zhang, M. Du, Z. Miao, H. Li, W. Dong, Y. Sang, H. Jiang, W. Li, H. Liu, S. Wang, InfoMat 2022, 4, e12346.

[32]

J. N. Hao, L. B. Yuan, C. Ye, D. L. Chao, K. Davey, Z. P. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366.

[33]

A. Naveed, H. J. Yang, J. Yang, Y. N. Nuli, J. L. Wang, Angew. Chem. Int. Ed. 2019, 58, 2760.

[34]

Z. Y. Miao, F. Zhang, H. Zhao, M. Du, H. Z. Li, H. C. Jiang, W. Z. Li, Y. H. Sang, H. Liu, S. H. Wang, Adv. Funct. Mater. 2022, 32, 2111635.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/