Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries

Ting Ma , Jiaojiao Deng , Yuxiao Lin , Qinghua Liang , Liang Hu , Xiaohu Wang , Jun Liu , Xinsheng Zhao , Yinwei Li , Ding Nan , Xiaoliang Yu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12704

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12704 DOI: 10.1002/eem2.12704
RESEARCH ARTICLE

Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries

Author information +
History +
PDF

Abstract

Organosulfur materials containing sulfur–sulfur bonds are an emerging class of high-capacity cathodes for lithium storage. However, it remains a great challenge to achieve rapid conversion reaction kinetics at practical testing conditions of high cathode mass loading and low electrolyte utilization. In this study, a Li-rich pyrolyzed polyacrylonitrile/selenium disulfide (pPAN/Se2S3) composite cathode is synthesized by deep lithiation to address the above challenges. The Li-rich molecular structure significantly boosts the lithium storage kinetics by accelerating lithium diffusivity and improving electronic conductivity. Even under practical test conditions requiring a lean electrolyte (Electrolyte/sulfur ratio of 4.1 µL mg-1) and high loading (7 mg cm-2 of pPAN/Se2S3), DL-pPAN/Se2S3 exhibits a specific capacity of 558 mAh g-1, maintaining 484 mAh g-1 at the 100th cycle with an average Coulombic efficiency of near 100%. Moreover, it provides (electro)chemically stable Li resources to offset Li consumption over charge–discharge cycles. As a result the as-fabricated anode-free cell shows a superior cycling stability with 90% retention of the initial capacity over 45 cycles. This study provides a novel approach for fabricating high-energy and stable Li–SPAN cells.

Cite this article

Download citation ▾
Ting Ma, Jiaojiao Deng, Yuxiao Lin, Qinghua Liang, Liang Hu, Xiaohu Wang, Jun Liu, Xinsheng Zhao, Yinwei Li, Ding Nan, Xiaoliang Yu. Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries. Energy & Environmental Materials, 2024, 7(4): e12704 DOI:10.1002/eem2.12704

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[2]

Y. M. Zhao, F. S. Yue, S. C. Li, Y. Zhang, Z. R. Tian, Q. Xu, S. Xin, Y. G. Guo, InfoMat 2021, 3, 460.

[3]

Z. Han, S. Li, R. Xiong, Z. Jiang, M. Sun, W. Hu, L. Peng, R. He, H. Zhou, C. Yu, Adv. Funct. Mater. 2022, 32, 2108669.

[4]

J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Nat. Energy 2019, 4, 180.

[5]

Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.

[6]

Y. Guo, H. Li, T. Zhai, Adv. Mater. 2017, 29, 1700007.

[7]

Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.

[8]

J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu, J. Wang, InfoMat 2022, 4, e12359.

[9]

C. P. Yang, S. Xin, Y. X. Yin, H. Ye, J. Zhang, Y. G. Guo, Angew. Chem. Int. Ed. 2013, 52, 8363.

[10]

L. Hencz, H. Chen, Z. Wu, S. Qian, S. Chen, X. Gu, X. Liu, C. Yan, S. Zhang, Exp. Dermatol. 2022, 2, 20210131.

[11]

S. S. Zhang, Energies 2014, 7, 4588.

[12]

G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Adv. Mater. 2018, 30, 1705590.

[13]

Z. Han, S. Li, Y. Wu, C. Yu, S. Cheng, J. Xie, J. Mater. Chem. A 2021, 9, 24215.

[14]

X. Yu, J. Zhao, R. Lv, Q. Liang, C. Zhan, Y. Bai, Z.-H. Huang, W. Shen, F. Kang, J. Mater. Chem. A 2015, 3, 18400.

[15]

X. Yu, J. Deng, R. Lv, Z.-H. Huang, B. Li, F. Kang, Energy Storage Mater. 2019, 20, 14.

[16]

Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K. Xi, R. V. Kumar, Adv. Energy Mater. 2019, 9, 1900953.

[17]

Z. Cui, C. Zu, W. Zhou, A. Manthiram, J. B. Goodenough, Adv. Mater. 2016, 28, 6926.

[18]

Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.

[19]

Z. Xiao, Z. Yang, L. Wang, H. Nie, M. E. Zhong, Q. Lai, X. Xu, L. Zhang, S. Huang, Adv. Mater. 2015, 27, 2891.

[20]

X. Yu, T. Liao, J. Tang, K. Zhang, S. Tang, R.-S. Gao, S. Lin, L.-C. Qin, Adv. Energy Sustainability Res. 2021, 2, 2100053.

[21]

W. Shin, L. Zhu, H. Jiang, W. F. Stickle, C. Fang, C. Liu, J. Lu, X. Ji, Mater. Today 2020, 40, 63.

[22]

Z. Jiang, Z. Zeng, W. Hu, Z. Han, S. Cheng, J. Xie, Energy. Storage Mater. 2021, 36, 333.

[23]

H. Liu, J. Holoubek, H. Zhou, A. Chen, N. Chang, Z. Wu, S. Yu, Q. Yan, X. Xing, Y. Li, Mater. Today 2021, 42, 17.

[24]

J. Lian, W. Guo, Y. Fu, J. Am. Chem. Soc. 2021, 143, 11063.

[25]

P. Sang, Q. Chen, D.-Y. Wang, W. Guo, Y. Fu, Chem. Rev. 2023, 123, 1262.

[26]

H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. Int. Ed. 2020, 132, 7374.

[27]

Z. Jiang, H.-J. Guo, Z. Zeng, Z. Han, W. Hu, R. Wen, J. Xie, ACS Nano 2020, 14, 13784.

[28]

W. Wang, Z. Cao, G. A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, ACS. Energy Lett. 2018, 3, 2899.

[29]

C. Luo, Y. Zhu, O. Borodin, T. Gao, X. Fan, Y. Xu, K. Xu, C. Wang, Adv. Funct. Mater. 2016, 26, 745.

[30]

W. J. Chen, B. Q. Li, C. X. Zhao, M. Zhao, T. Q. Yuan, R. C. Sun, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 10732.

[31]

C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X.-Q. Yang, C. Wang, Proc. Natl. Acad. Sci. 2020, 117, 14712.

[32]

M. A. Weret, C.-F. J. Kuo, W.-N. Su, T. S. Zeleke, C.-J. Huang, N. A. Sahalie, T. A. Zegeye, Z. T. Wondimkun, F. W. Fenta, B. A. Jote, J. Power Sources 2022, 541, 231693.

[33]

Z. Li, J. Zhang, Y. Lu, X. W. Lou, Sci. Adv. 2018, 4, eaat1687.

[34]

Y. Liu, A. K. Haridas, K.-K. Cho, Y. Lee, J.-H. Ahn, J. Phys. Chem. C 2017, 121, 26172.

[35]

X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, Nat. Commun. 2019, 10, 1021.

[36]

S. Ma, Z. Zhang, Y. Wang, Z. Yu, C. Cui, M. He, H. Huo, G. Yin, P. Zuo, Chem. Eng. J. 2021, 418, 129410.

[37]

L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo, Y. S. Hu, H. Li, X. Huang, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 8289.

[38]

S. Langrud, A. A. Razzaq, S. Santhanagopalan, R. Brow, W. Xing, J. Electrochem. Soc. 2022, 169, 070514.

[39]

Z. Jiang, H.-J. Guo, Z. Zeng, X. Chen, Y. Lei, X. Liang, Z. Han, W. Hu, J. Feng, R. Wen, ACS Appl. Mater. Interfaces 2021, 13, 41555.

[40]

Y. Deng, H. Xu, Z. Bai, B. Huang, J. Su, G. Chen, J. Power Sources 2015, 300, 386.

[41]

M. Wang, H. Yang, K. Shen, H. Xu, W. Wang, Z. Yang, L. Zhang, J. Chen, Y. Huang, M. Chen, Small Methods 2020, 4, 2000353.

[42]

S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.

[43]

X. Zhao, C. Wang, Z. Li, X. Hu, A. A. Razzaq, Z. Deng, J. Mater. Chem. A 2021, 9, 19282.

[44]

Q. Zhang, S. Liu, Z. Lin, K. Wang, M. Chen, K. Xu, W. Li, Nano Energy 2020, 74, 104860.

[45]

Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao, C. Li, J. Tan, K. Yu, G. Zhou, H. M. Cheng, Adv. Mater. 2022, 34, 2108400.

[46]

C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 130, 14251.

[47]

X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.

[48]

X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, Chem 2018, 4, 174.

[49]

S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, Angew. Chem. Int. Ed. 2021, 60, 3661.

[50]

M. Itagaki, K. Honda, Y. Hoshi, I. Shitanda, J. Electroanal. Chem. 2015, 737, 78.

[51]

M. Barghamadi, A. S. Best, A. I. Bhatt, A. F. Hollenkamp, P. J. Mahon, M. Musameh, T. Rüther, J. Power Sources 2015, 295, 212.

[52]

J. Wu, L. Yuan, Z. Li, X. Xie, Y. Huang, Mater. Horiz. 2020, 7, 2619.

[53]

J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu, J. G. Zhang, Adv. Funct. Mater. 2016, 26, 7094.

[54]

H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.

[55]

S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 2018, 8, 1801556.

[56]

H. Cheng, C. Gao, N. Cai, M. Wang, Chem. Commun. 2021, 57, 3708.

[57]

S. Nanda, A. Bhargav, A. Manthiram, Joule 2020, 4, 1121.

[58]

J. Chen, J. Xiang, X. Chen, L. Yuan, Z. Li, Y. Huang, Energy Storage Mater. 2020, 30, 179.

[59]

S. Nanda, H. Y. Asl, A. Bhargav, A. Manthiram, Cell Rep. Phys. Sci. 2022, 3, 100808.

[60]

N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, ACS Energy Lett. 2021, 6, 1839.

[61]

W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[62]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[63]

S. Grimme, J. Comput. Chem. 2006, 27, 1787.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/