Boosting Peroxymonosulfate Activation via Co-Based LDH-Derived Magnetic Catalysts: A Dynamic and Static State Assessment of Efficient Radical-Assisted Electron Transfer Processes

Wenhan Yang , Junming Xia , Fanfan Shang , GeGe Yang , Bin Wang , Hairui Cai , Lingyun Jing , Hao Zhu , Shengchun Yang , Chao Liang , Guosheng Shao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12701

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12701 DOI: 10.1002/eem2.12701
RESEARCH ARTICLE

Boosting Peroxymonosulfate Activation via Co-Based LDH-Derived Magnetic Catalysts: A Dynamic and Static State Assessment of Efficient Radical-Assisted Electron Transfer Processes

Author information +
History +
PDF

Abstract

Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates (PMS) still lack systematic investigation. Herein, a more stable magnetic layered double oxides (CFLDO/N-C), was designed using self-polymerization and high temperature carbonization of dopamine. The CFLDO/N-C/PMS system effectively activated PMS to remove 99% (k = 0.737 min-1) of tetracycline (TC) within 10 min. The CFLDO/N-C/PMS system exhibited favorable resistance to inorganic anions and natural organics, as well as satisfactory suitability for multiple pollutants. The magnetic properties of the catalyst facilitated the separation of catalysts from the liquid phase, resulting in excellent reproducibility and effectively reducing the leaching of metal ions. An electronic bridge was constructed between cobalt (the active platform of the catalyst) and PMS, inducing PMS to break the O–O bond to generate the active species. The combination of static analysis and dynamic evolution confirmed the effective adsorption of PMS on the catalyst surface as well as the strong radical-assisted electron transfer process. Eventually, we further identified the sites where the reactive species attacked the TC and evaluated the toxicity of the intermediates. These findings offer innovative insights into the rapid degradation of pollutants achieved by transition metals in SR-AOPs and its mechanistic elaboration.

Keywords

advanced oxidation process / degradation mechanisms / electron transport / layered double hydroxide / reactive species

Cite this article

Download citation ▾
Wenhan Yang, Junming Xia, Fanfan Shang, GeGe Yang, Bin Wang, Hairui Cai, Lingyun Jing, Hao Zhu, Shengchun Yang, Chao Liang, Guosheng Shao. Boosting Peroxymonosulfate Activation via Co-Based LDH-Derived Magnetic Catalysts: A Dynamic and Static State Assessment of Efficient Radical-Assisted Electron Transfer Processes. Energy & Environmental Materials, 2024, 7(5): e12701 DOI:10.1002/eem2.12701

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. M. D’Costa, C. E. King, L. Kalan, M. Morar, W. W. Sung, C. Schwarz, D. Froese, G. Zazula, F. Calmels, R. Debruyne, G. B. Golding, H. N. Poinar, G. D. Wright, Nature 2011, 477, 457.

[2]

L. S. J Roope, R. D. Smith, K. B. Pouwels, J. Buchanan, L. Abel, P. Eibich, C. C. Butler, P. S. Tan, A. S. Walker, J. V. Robotham, S. Wordsworth, Science 2019, 41, 364.

[3]

E. M. Abd El-Monaem, H. M. Elshishini, S. S. Bakr, H. G El-Aqapa, M. Hosny, G. Andaluri, G. M El-Subruiti, A. M. Omer, A. S. Eltaweil, NPJ. Clean. Water 2023, 6, 34.

[4]

L. Zhu, J. Ji, J. Liu, S. Mine, M. Matsuoka, J. Zhang, M. Xing, Angew. Chem. Int. Ed. 2020, 59, 13968.

[5]

J. Wang, S. Wang, Chem. Eng. J. 2018, 334, 1502.

[6]

S. Giannakis, K. Y. A. Lin, F. Ghanbari, Chem. Eng. J. 2021, 406, 127083.

[7]

Q. Zhong, Y. Sun, C. Xu, Y. Li, D. Sun, L. Wu, S. Yang, Y. Liu, C. Qi, Z. Xu, H. He, S. Li, Z. Wang, S. Wang, Appl. Catal. B-Environ. 2023, 339, 123113.

[8]

Y. Li, H. Dong, L. Li, L. Tang, R. Tian, R. Li, J. Chen, Q. Xie, Z. Jin, J. Xiao, S. Xiao, G. Zeng, Water Res. 2021, 192, 116850.

[9]

Z. Fang, J. Qi, W. Chen, L. Zhang, J. Wang, C. Tian, Q. Dai, W. Liu, L. Wang, Appl. Catal. B-Environ. 2023, 338, 123084.

[10]

L. S. Zhang, X. H. Jiang, Z. A. Zhong, L. Tian, Q. Sun, Y. T. Cui, X. Lu, J. P. Zou, S. L. Luo, Angew. Chem. Int. Ed. 2021, 60, 21751.

[11]

Q. Wang, D. O’ Hare, Chem. Rev. 2012, 112, 4124.

[12]

G. Fan, F. Li, D. G. Evans, X. Duan, Chem. Soc. Rev. 2014, 43, 7040.

[13]

H. Yi, S. Liu, C. Lai, G. Zeng, M. Li, X. Liu, B. Li, X. Huo, L. Qin, L. Li, M. Zhang, Y. Fu, Z. An, L. Chen, Adv. Energy Mater. 2021, 11, 2002863.

[14]

J. Feng, Y. He, Y. Liu, Y. Du, D. Li, Chem. Soc. Rev. 2015, 44, 5291.

[15]

Z. H. Xie, C. S. He, Y. L. He, S. R. Yang, S. Y. Yu, Z. Xiong, Y. Du, Y. Liu, Z. C. Pan, G. Yao, B. Lai, Water Res. 2023, 23, 119666.

[16]

J. Qian, R. Ma, Z. Chen, G. Wang, Y. Zhang, Y. Du, Y. Chen, T. An, B.-J. Ni, Chem. Eng. J. 2023, 469, 143554.

[17]

Y. Zhao, X. Jia, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, D. O’Hare, T. Zhang, Adv. Energy Mater. 2016, 6, 1501974.

[18]

M. Xu, M. Wei, Adv. Funct. Mater. 2018, 28, 1802943.

[19]

T. Shen, H. Yu, P. Wang, X. Wang, C. Yang, P. Xu, J. Qu, G. Zhang, Appl. Catal. B-Environ. 2023, 336, 122950.

[20]

S. J. Clarke, C. A. Hollmann, Z. Zhang, D. Suffern, S. E. Bradforth, N. M. Dimitrijevic, W. G. Minarik, J. L. Nadeau, Nat. Mater. 2006, 5, 409.

[21]

Q. Wen, L. Liu, Q. Yang, F. Lv, S. Wang, Adv. Funct. Mater. 2013, 23, 764.

[22]

J. Manna, S. Akbayrak, S. Özkar, Appl. Catal. B-Environ. 2017, 208, 104.

[23]

L. Zhang, J. Qi, H. Zhang, L. Xing, Z. Zhou, R. Lei, B. Li, H. Liu, L. Wang, Chem. Eng. J. 2023, 457, 141223.

[24]

Y. Gao, W. Zhu, J. Liu, P. Lin, J. Zhang, T. Huang, K. Liu, Appl. Catal. B-Environ. 2021, 295, 120273.

[25]

M. Xiong, Y. Sun, B. Chai, G. Fan, G. Song, Appl. Surf. Sci. 2023, 615, 156398.

[26]

Z. Liu, Z. Gao, Q. Wu, Chem. Eng. J. 2021, 423, 130283.

[27]

T. Zhang, H. Zhu, J. P. Croue, Environ. Sci. Technol. 2013, 47, 2784.

[28]

W. Yang, L. Jing, T. Wang, X. Kong, R. Quan, X. Li, D. Zhang, R. Zhou, H. Zhu, J. Taiwan. Inst Chem. Eng. 2022, 132, 104209.

[29]

L. Jing, W. Yang, T. Wang, J. Wang, X. Kong, S. Lv, X. Li, R. Quan, H. Zhu, Sep. Purif. Technol. 2022, 290, 120925.

[30]

X. Tao, P. Pan, T. Huang, L. Chen, H. Ji, J. Qi, F. Sun, W. Liu, Chem. Eng. J. 2020, 395, 125186.

[31]

T. Li, S. Lu, W. Lin, H. Ren, R. Zhou, Chem. Eng. J. 2022, 433, 133801.

[32]

P. Xu, R. Wei, P. Wang, X. Li, C. Yang, T. Shen, T. Zheng, G. Zhang, Water Res. 2023, 235, 119843.

[33]

X. Li, X. Wen, J. Lang, Y. Wei, J. Miao, X. Zhang, B. Zhou, M. Long, P. J. J. Alvarez, L. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202303267.

[34]

Z. Zhao, P. Wang, C. Song, T. Zhang, S. Zhan, Y. Li, Angew. Chem. Int. Ed. 2023, 62, e202216403.

[35]

H. Li, N. Yuan, J. Qian, B. Pan, Environ. Sci. Technol. 2022, 56, 4498.

[36]

Z. Fang, X. Guo, X. Zhou, H. Luo, J. Zhou, Environ. Chem. 2022, 41, 1435.

[37]

J. Ji, Q. Yan, P. Yin, S. Mine, M. Matsuoka, M. Xing, Angew. Chem. Int. Ed. 2021, 60, 2903.

[38]

Y. Shi, X. Wang, X. Liu, C. Lin, W. Shen, L. Zhang, Appl. Catal. B-Environ. 2020, 277, 119229.

[39]

Y. Shi, Z. Yang, L. Shi, H. Li, X. Liu, X. Zhang, J. Chen, C. Liang, S. Cao, F. Guo, X. Liu, Z. Ai, L. Zhang, Environ. Sci. Technol. 2022, 56, 14478.

[40]

X. Guo, H. Zhang, Y. Yao, C. Xiao, X. Yan, K. Chen, J. Qi, Y. Zhou, Z. Zhu, X. Sun, J. Li, Appl. Catal. B-Environ. 2023, 323, 122136.

[41]

W. Ren, G. Nie, P. Zhou, H. Zhang, X. Duan, S. Wang, Environ. Sci. Technol. 2020, 54, 6438.

[42]

H. Zhang, C. Xie, L. Chen, J. Duan, F. Li, W. Liu, Water Res. 2023, 229, 119392.

[43]

D. Zhang, Y. Li, P. Wang, J. Qu, Y. Li, S. Zhan, Nat. Commun. 2023, 14, 3538.

[44]

J. Lee, U. von Gunten, J. H. Kim, Environ. Sci. Technol. 2020, 54, 3064.

[45]

A. Khan, Z. Liao, Y. Liu, A. Jawad, J. Ifthikar, Z. Chen, J. Hazard. Mater. 2017, 329, 262.

[46]

S. D. M Brown, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, Phys. Rev. B 2001, 63, 166414.

[47]

P. P. Lopes, D. Y. Chung, X. Rui, H. Zheng, H. He, J. Am. Chem. Soc. 2021, 143, 2741.

[48]

Y. Yao, Y. Jiang, H. Yang, X. Sun, Y. Yu, Nanoscale 2017, 9, 10880.

[49]

P. Zhang, Y. Yang, X. Duan, Y. Liu, S. Wang, ACS Catal. 2021, 11, 11129.

[50]

Z. Hao, W. Hou, C. Fang, Y. Huang, X. Liu, J. Hazard. Mater. 2022, 439, 129618.

[51]

C. Liu, H. Dai, C. Tan, Q. Pan, F. Hu, X. Peng, Appl. Catal. B-Environ. 2022, 310, 121326.

[52]

W. Gao, G. Li, Q. Wang, L. Zhang, K. Wang, S. Pang, G. Zhang, L. Lv, X. Liu, W. Gao, L. Sun, Y. Xia, Z. Ren, P. Wang, Chem. Eng. J. 2023, 464, 142694.

[53]

W. Wu, R. Wang, H. Chang, N. Zhong, T. Zhang, K. Wang, N. Ren, S.-H. Ho, Chem. Eng. J. 2023, 458, 141470.

[54]

Y. Zhou, H. Liu, X. Gu, X. Wu, L. Feng, Carbon Energy 2022, 4, 924.

[55]

X. Wang, J. Zhang, H. Wang, M. Liang, Q. Wang, F. Chen, Energy Environ. Mater. 2023,

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/