Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
Yongtao Yu , Yuelin Yu , Hongyi Wu , Tianshuo Gao , Yi Zhang , Jiajia Wu , Jiawei Yan , Jian Shi , Hideaki Morikawa , Chunhong Zhu
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12700
Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors
Wearable triboelectric nanogenerators (TENGs) have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance. Herein, polyetherimide–Al2O3 (PAl) and polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP, PH) nanofiber membranes were used as tribo-positive and tribo-negative materials, respectively. Phytic acid-doped polyaniline (PANI)/cotton fabric (PPCF) and ethylenediamine (EDA)-crosslinked PAl (EPAl) nanofiber membranes were used as triboelectrode and triboencapsulation materials, respectively. The result showed that when the PAl–PH-based TENG was shaped as a circle with a radius of 1 cm, under the pressure of 50 N, and the frequency of 0.5 Hz, the open-circuit voltage (Voc) and short-circuit current (Isc) reached the highest value of 66.6 V and -93.4 to 110.1 nA, respectively. Moreover, the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices. When the PAl–PH-based TENG was shaped as a 5 × 5 cm2 rectangle, a 33 µF capacitor could be charged to 15 V in 28 s. Interestingly, compared to PAl nanofiber membranes, EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance. The PPCF exhibited <5% resistance change after washing, bending, and stretching.
energy-harvesting / power supply / sensors / solvent-resistant / wearable triboelectric nanogenerator
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |