Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors

Yongtao Yu , Yuelin Yu , Hongyi Wu , Tianshuo Gao , Yi Zhang , Jiajia Wu , Jiawei Yan , Jian Shi , Hideaki Morikawa , Chunhong Zhu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12700

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12700 DOI: 10.1002/eem2.12700
RESEARCH ARTICLE

Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors

Author information +
History +
PDF

Abstract

Wearable triboelectric nanogenerators (TENGs) have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance. Herein, polyetherimide–Al2O3 (PAl) and polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP, PH) nanofiber membranes were used as tribo-positive and tribo-negative materials, respectively. Phytic acid-doped polyaniline (PANI)/cotton fabric (PPCF) and ethylenediamine (EDA)-crosslinked PAl (EPAl) nanofiber membranes were used as triboelectrode and triboencapsulation materials, respectively. The result showed that when the PAl–PH-based TENG was shaped as a circle with a radius of 1 cm, under the pressure of 50 N, and the frequency of 0.5 Hz, the open-circuit voltage (Voc) and short-circuit current (Isc) reached the highest value of 66.6 V and -93.4 to 110.1 nA, respectively. Moreover, the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices. When the PAl–PH-based TENG was shaped as a 5 × 5 cm2 rectangle, a 33 µF capacitor could be charged to 15 V in 28 s. Interestingly, compared to PAl nanofiber membranes, EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance. The PPCF exhibited <5% resistance change after washing, bending, and stretching.

Keywords

energy-harvesting / power supply / sensors / solvent-resistant / wearable triboelectric nanogenerator

Cite this article

Download citation ▾
Yongtao Yu, Yuelin Yu, Hongyi Wu, Tianshuo Gao, Yi Zhang, Jiajia Wu, Jiawei Yan, Jian Shi, Hideaki Morikawa, Chunhong Zhu. Solvent-Resistant Wearable Triboelectric Nanogenerator for Energy-Harvesting and Self-Powered Sensors. Energy & Environmental Materials, 2024, 7(5): e12700 DOI:10.1002/eem2.12700

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Chen, C. Chen, L. Jin, H. Guo, A. C. Wang, F. Ning, Q. Xu, Z. Du, F. Wang, Z. L. Wang, Energy Environ. Sci. 2021, 14, 955.

[2]

Y. Zou, A. Libanori, J. Xu, A. Nashalian, J. Chen, Research 2020, 2020, 7158953.

[3]

L. Dong, M. Wang, J. Wu, C. Zhang, J. Shi, K. Oh, L. Yao, C. Zhu, H. Morikawa, Chem. Eng. J. 2023, 457, 141276.

[4]

C. Zhu, J. Shi, S. Xu, M. Ishimori, J. Sui, H. Morikawa, Cellulose 2017, 24, 2657.

[5]

C. Zhu, A. Mochizuki, J. Shi, M. Ishimori, S. Koyama, H. Ishizawa, J. Yan, H. Morikawa, Cellulose 2021, 28, 8139.

[6]

Z. L. Wang, Adv. Funct. Mater. 2008, 18, 3553.

[7]

F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283.

[8]

L. Ma, M. Zhou, R. Wu, A. Patil, H. Gong, S. Zhu, T. Wang, Y. Zhang, S. Shen, K. Dong, L. Yang, J. Wang, W. Guo, Z. L. Wang, ACS Nano 2020, 14, 4716.

[9]

J. Li, X. Wang, APL Mater. 2017, 5, 74103.

[10]

L. Bai, Q. Li, Y. Yang, S. Ling, H. Yu, S. Liu, J. Li, W. Chen, Research 2021, 2021, 1843061.

[11]

Y.-E. Shin, J.-E. Lee, Y. Park, S.-H. Hwang, H. G. Chae, H. Ko, J. Mater. Chem. A 2018, 6, 22879.

[12]

Q. Wang, B. Xu, J. Huang, D. Tan, ACS Appl. Mater. Interfaces 2023, 15, 9182.

[13]

S. Shen, J. Yi, Z. Sun, Z. Guo, T. He, L. Ma, H. Li, J. Fu, C. Lee, Z. L. Wang, Nanomicro. Lett. 2022, 14, 225.

[14]

L. Dong, M. Wang, J. Wu, C. Zhu, J. Shi, H. Morikawa, Adv. Fiber Mater. 2022, 4, 1486.

[15]

A. Chandrasekhar, N. R. Alluri, V. Vivekananthan, Y. Purusothaman, S.-J. Kim, J. Mater. Chem. C 2017, 5, 1488.

[16]

B. Dudem, A. R. Mule, H. R. Patnam, J. S. Yu, Nano Energy 2019, 55, 305.

[17]

P. Ding, J. Chen, U. Farooq, P. Zhao, N. Soin, L. Yu, H. Jin, X. Wang, S. Dong, J. Luo, Nano Energy 2018, 46, 63.

[18]

Z. Zhang, W. Gong, Z. Bai, D. Wang, Y. Xu, Z. Li, J. Guo, L. S. Turng, ACS Nano 2019, 13, 12787.

[19]

E. Tuncer, Eur. Phys. J. E Soft. Matter. 2017, 40, 66.

[20]

H. Wu, M. Sulkis, J. Driver, A. Saade-Castillo, A. Thompson, J. H. Koo, Addit. Manuf. 2018, 24, 298.

[21]

S. Govardhan, M. Raji Sivani, P. Sanjana, G. Ajeesh, V. Jennifer, B. Shantanu, Mater. Res. Express 2020, 6, 125371.

[22]

A. Babu, I. Aazem, R. Walden, S. Bairagi, D. M. Mulvihill, S. C. Pillai, Chem. Eng. J. 2023, 452, 139060.

[23]

X. Guan, B. Xu, M. Wu, T. Jing, Y. Yang, Y. Gao, Nano Energy 2021, 80, 105549.

[24]

H.-J. Qiu, W.-Z. Song, X.-X. Wang, J. Zhang, Z. Fan, M. Yu, S. Ramakrishna, Y.-Z. Long, Nano Energy 2019, 58, 536.

[25]

S. Lee, J. H. Park, C. G. Park, D.-Y. Jeong, N. M. Hwang, Cryst. Growth Des. 2021, 21, 7240.

[26]

B. Acharya, C. M. Seed, D. W. Brenner, A. I. Smirnov, J. Krim, Sci. Rep. 2019, 9, 18584.

[27]

M. Cai, D. Yuan, X. Zhang, Y. Pu, X. Liu, H. He, L. Zhang, X. Ning, J. Power Sources 2020, 461, 461.

[28]

D. Yeon, Y. Lee, M.-H. Ryou, Y. M. Lee, Electrochim. Acta 2015, 157, 282.

[29]

T. Zhao, Y. Fu, C. Sun, X. Zhao, C. Jiao, A. Du, Q. Wang, Y. Mao, B. Liu, Biosens. Bioelectron. 2022, 205, 114115.

[30]

M. Wang, Z. Chen, L. Dong, J. Wu, C. Li, Q. Gao, J. Shi, C. Zhu, H. Morikawa, Chem. Eng. J. 2023, 457, 141164.

[31]

Y. Liu, Y. Yu, X. Wu, X. Zhao, J. Text. Inst. 2022,

[32]

Y. Wang, Y. Liu, Z. Cao, X. Zhao, Text. Res. J. 2022, 92, 3816.

[33]

Z. Lin, T. Wu, B. Jia, J. Shi, B. Zhou, C. Zhu, Y. Wang, R. Liang, M. Mizuno, Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128272.

[34]

S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang, G. Xie, Y. Jiang, S. Li, H. Tai, Sens. Actuators B Chem. 2021, 327, 128923.

[35]

S. Cui, Y. Zheng, J. Liang, D. Wang, Nano Res. 2018, 11, 1873.

[36]

S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou, W. Liu, Nano Energy 2018, 49, 31.

[37]

T. Wu, Z. Lin, H. Wu, C. Zhu, T. Komiyama, J. Shi, R. Liang, Sep. Purif. Technol. 2022, 287, 120604.

[38]

S. Im, H. J. Kim, K. Shin, H. Y. Jeong, W. G. Hong, K. Kwon, Y. J. Hong, J. Korean Phys. Soc. 2019, 74, 145.

[39]

X. Pan, S. Wu, T. Wang, G. Histand, Y. Li, J. Mater. Sci. 2022, 57, 12836.

[40]

F. Zeng, X. Xu, Y. Shen, Y. Liu, X. Shan, Z. Qin, Cellulose 2021, 28, 10637.

[41]

E. Magovac, I. Jordanov, J. C. Grunlan, S. Bischof, Materials 2020, 13, 5492.

[42]

E. Tohidian, A. Dehban, F. Zokaee Ashtiani, A. Kargari, Chem. Eng. Res. Design 2021, 168, 59.

[43]

R. Machatschek, M. Heuchel, A. Lendlein, J. Mater. Res. 2021, 37, 67.

[44]

A. Zhou, Y. Wang, M. M. A. Almijbilee, Y. Wang, D. Cheng, Iran. Polym. J. 2022, 31, 1021.

[45]

X. Wu, G. Song, W. Zhang, H. Feng, Y. Liu, E. Huang, X. Lin, Y. Yang, D. Q. Tan, J. Mater. Chem. A 2022, 10, 13097.

[46]

J. W. Lee, B. U. Ye, J. M. Baik, APL Mater. 2017, 5, 5.

[47]

Z.-H. Lin, G. Cheng, Y. Yang, Y. S. Zhou, S. Lee, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 2810.

[48]

C. Garcia, I. Trendafilova, R. Guzman de Villoria, J. Sanchez del Rio, Nano Energy 2018, 50, 401.

[49]

G. Zhao, S. Gong, H. Wang, J. Ren, N. Wang, Y. Yang, G. Gao, S. Chen, L. Li, Int. J. Precis. Eng. Manuf. Green Technol. 2020, 8, 855.

[50]

L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, Z. L. Wang, Nano Lett. 2013, 13, 91.

[51]

P. Tofel, K. Castkova, D. Riha, D. Sobola, N. Papez, J. Kastyl, S. Talu, Z. Hadas, Nanomaterials 2022, 12, 349.

[52]

L. Shi, S. Dong, H. Xu, S. Huang, Q. Ye, S. Liu, T. Wu, J. Chen, S. Zhang, S. Li, X. Wang, H. Jin, J. M. Kim, J. Luo, Nano Energy 2019, 64, 103960.

[53]

Z. Haider, A. Haleem, R. U. S. Ahmad, U. Farooq, L. Shi, U. P. Claver, K. Memon, A. Fareed, I. Khan, M. K. Mbogba, S. M. C. Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. He, J. Luo, G. Zhao, Nano Energy 2020, 68, 104294.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/