Advances in Liquid Crystal Epoxy: Molecular Structures, Thermal Conductivity, and Promising Applications in Thermal Management

Wenying Zhou , Yun Wang , Fanrong Kong , Weiwei Peng , Yandong Wang , Mengxue Yuan , Xiaopeng Han , Xiangrong Liu , Bo Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12698

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12698 DOI: 10.1002/eem2.12698
REVIEW

Advances in Liquid Crystal Epoxy: Molecular Structures, Thermal Conductivity, and Promising Applications in Thermal Management

Author information +
History +
PDF

Abstract

Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power, high-frequency, and high-voltage insulating packaging applications, due to the challenge of achieving high thermal conductivity (k), desirable dielectric performance, and robust thermomechanical properties simultaneously. Liquid crystal epoxy (LCE) emerges as a unique epoxy, exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures. This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy, while demonstrating a prominently enhanced k. As such, liquid crystal epoxy materials represent a promising solution for thermal management, with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment. This article provides a comprehensive review on recent advances in liquid crystal epoxy, emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement, organized mesoscopic domain, k, and relevant physical properties. The impacts of LC units and curing agents on the development of ordered structure are discussed, alongside the consequent effects on the k, dielectric, thermal, and other properties. External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated. Finally, potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.

Keywords

intrinsically thermal conductive epoxy / liquid crystal unit / ordered structure / phonon transport / thermal conductivity

Cite this article

Download citation ▾
Wenying Zhou, Yun Wang, Fanrong Kong, Weiwei Peng, Yandong Wang, Mengxue Yuan, Xiaopeng Han, Xiangrong Liu, Bo Li. Advances in Liquid Crystal Epoxy: Molecular Structures, Thermal Conductivity, and Promising Applications in Thermal Management. Energy & Environmental Materials, 2024, 7(4): e12698 DOI:10.1002/eem2.12698

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. M. Adnan, E. G. Tveten, J. Glaum, M. G. Ese, Adv. Electron. Mater. 2019, 5, 1800505.

[2]

W. Y. Zhou, X. W. Ding, Thermally Conductive Polymer Materials, China National Defense Industry Press, Beijing 2014.

[3]

J. Chen, X. Y. Huang, B. Sun, P. K. Jiang, ACS Nano 2018, 13, 337.

[4]

C. L. Huang, X. Qian, R. G. Yang, Mat. Sci. Eng. R. 2018,

[5]

X. F. Xu, J. Chen, J. Zhou, B. W. Li, Adv. Mater. 2018, 30, 1705544.

[6]

N. Burger, A. Laachachi, M. Ferriol, M. Lutzc, V. Toniazzoa, D. Ruch, Prog. Polym. Sci. 2016,

[7]

X. F. Xu, J. Zhou, J. Chen, Adv. Funct. Mater. 2020, 30, 1904704.

[8]

H. Y. Chen, V. V. Ginzburg, J. Yang, Y. F. Yang, W. Liu, Y. Huang, L. B. Du, B. Chen, Prog. Polym. Sci. 2016, 59, 41.

[9]

Y. Lin, X. Y. Huang, J. Chen, P. K. Jiang, High Volt. 2017, 2, 139.

[10]

M. Lokanathan, P. V. Acharya, A. Ouroua, S. M. Strank, R. E. Hebner, V. Bahadur, Proc. IEEE. 2021, 109, 1364.

[11]

W. Y. Zhou, Y. Wang, G. Z. Cao, D. Cao, T. Li, X. L. Zhang, Acta Mater. Compos. Sin. 2021, 38, 2038.

[12]

R. Shrestha, P. Li, B. Chatterjee, T. Zheng, X. F. Wu, Z. Y. Liu, T. F. Luo, S. Choi, K. Hippalgaonkar, M. P. Boer, S. Shen, Nat. Commun. 2018, 9, 1664.

[13]

S. Shen, A. Henry, J. Tong, R. T. Zheng, G. Chen, Nat. Nanotechnol. 2010, 5, 251.

[14]

V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. D. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, L. Shi, A. Henry, B. A. Cola, Nat. Nanotechnol. 2014, 9, 384.

[15]

P. Hummel, A. M. Lechner, K. Herrmann, P. Biehl, C. Rössel, L. Wiedenhöft, F. H. Schacher, M. Retsch, Macromolecules 2020, 53, 5528.

[16]

G. H. Kim, D. Lee, A. Shanker, L. Shao, M. S. Kwon, D. Gidley, J. Kim, K. P. Pipe, Nat. Mater. 2015, 14, 295.

[17]

X. F. Wei, T. Zhang, T. F. Luo, Phys. Chem. Chem. Phys. 2016, 18, 32146.

[18]

A. Shanker, C. Li, G. H. Kim, D. Gidley, K. P. Pipe, J. Kim, Sci. Adv. 2017, 3, e1700342.

[19]

A. M. Evans, A. Giri, V. K. Sangwan, S. Xun, M. Bartnof, C. G Torres-Castanedo, H. B. Balch, M. S. Rahn, N. P. Bradshaw, E. Vitaku, D. W. Burke, H. Li, M. J. Bedzyk, F. Wang, J.-L. Brédas, J. A. Malen, A. J. H. McGaughey, M. C. Hersam, W. R. Dichtel, P. E. Hopkins, Nat. Mater. 2021, 20, 1142.

[20]

F. L. Tan, S. Han, D. L. Peng, H. L. Wang, J. Yang, P. Zhao, X. J. Ye, X. Dong, Y. Y. Zheng, N. Zheng, L. Gong, C. L. Liang, N. Frese, A. Gölzhäuser, H. Y. Qi, S. S. Chen, W. Liu, Z. K. Zheng, J. Am. Chem. Soc. 2021, 143, 3927.

[21]

Y. Wang, W. Y. Zhou, D. Cao, T. Li, G. Z. Cao, X. L. Zhang, Acta Mater. Compos. Sin. 2022, 39, 2060.

[22]

Q. Y. Zhang, X. Chen, B. Zhang, T. Zhang, W. C. Lu, Z. Chen, Z. Y. Liu, S. H. Kim, B. Donovan, R. J. Warzoha, E. D. Gomez, J. Bernholc, Q. M. Zhang, Matter 2021, 4, 2448.

[23]

T. Na, S. Che, Y. Sun, X. Liu, J. Hao, C. Zhao, J. Appl. Polym. Sci. 2019, 136, 47078.

[24]

M. Harada, K. Yamaguchi, J. Appl. Polym. Sci. 2021, 138, 50593.

[25]

B. Mossety-Leszczak, B. Pilch-Pitera, J. Karaś, M. Kisiel, W. Zają, M. Włodarsk, Prog. Org. Coat. 2022, 168, 106873.

[26]

Y. Q. Guo, K. P. Ruan, X. T. Shi, X. T. Yang, J. W. Gu, Compos. Sci. Technol. 2020, 193, 108134.

[27]

X. F. Wei, Z. Wang, Z. T. Tian, T. F. Luo, J. Heat Trans. 2021, 143, 072101.

[28]

X. Qian, J. W. Zhou, G. Chen, Nat. Mater. 2021, 20, 1188.

[29]

Y. Hong, M. Goh, Polymers 2021, 13, 1302.

[30]

K. P. Ruan, X. Zhong, X. T. Shi, J. J. Dang, J. W. Gu, Mater. Today Phys. 2021, 20, 100456.

[31]

S. H. Li, X. X. Yu, H. Bao, N. Yang, J. Phys. Chem. C 2018, 122, 13140.

[32]

M. Lee, M. Y. Ha, M. Lee, J. H. Kim, S. D. Kim, I. Kim, W. B. Lee, Nanoscale Adv. 2022, 4, 1970.

[33]

H. L. Guo, J. Zheng, J. Q. Gan, L. Y. Liang, K. Wu, M. G. Lu, J. Mater. Sci. Mater. Electr. 2016, 27, 2754.

[34]

M. Harada, Y. Kawasaki, J. Appl. Polym. Sci. 2022, 139, e52391.

[35]

S. J. Yuan, Z. Q. Peng, M. Z. Rong, M. Q. Zhang, Mater. Chem. Front. 2022, 6, 1137.

[36]

Q. Zhang, G. K. Chen, K. Wu, J. Shi, L. Y. Liang, M. G. Lu, J. Appl. Polym. Sci. 2020, 137, 49143.

[37]

X. T. Yang, J. H. Zhu, D. Yang, J. L. Zhang, Y. Q. Guo, X. Zhong, J. Kong, J. W. Gu, Compos. B Eng. 2020, 185, 107784.

[38]

Y. Li, C. Liu, W. Y. Zhou, Z. Z. Hou, Q. Shi, C. D. Gong, Y. Wu, Mater. Today Commun. 2021, 29, 102792.

[39]

T. Giang, J. Kim, J. Ind. Eng. Chem. 2015, 30, 77.

[40]

M. Harada, D. Miyuki, M. Ochi, J. Appl. Polym. Sci. 2018, 135, 46181.

[41]

Y. S. Lin, S. L. Hsu, T. H. Ho, L. C. Jheng, Y. H. Hsiao, J. Polym. Res. 2021,

[42]

S. Ota, M. Harada, J. Appl. Polym. Sci. 2021, 138, 50367.

[43]

Y. Ohki, IEEE Electr. Insul. M. 2010, 26, 48.

[44]

H. L. Guo, M. G. Lu, L. Y. Liang, K. Wu, D. Ma, W. Xue, J. Electron. Mater. 2017, 46, 982.

[45]

A. I. Olamilekan, H. Yeo, ACS Appl. Polym. Mater. 2021, 3, 4147.

[46]

L. C. Wu, Y. W. Huang, Y. M. Yeh, C. H. Lin, Polymers 2022, 14, 1252.

[47]

M. M. Hossain, A. I. Olamilekan, H. O. Jeong, H. Lim, Y. K. Kim, H. Cho, H. D. Jeong, M. A. IsLam, M. Goh, N. H. You, M. J. Kim, S. Q. Choi, J. R. Hahn, H. Yeo, S. G. Jang, Macromolecules 2022, 55, 4402.

[48]

X. T. Yang, X. Zhong, J. L. Zhang, J. W. Gu, J. Mater. Sci. Technol. 2021, 68, 209.

[49]

Y. Kim, H. Yeo, N. H. You, S. G. Jang, S. Ahn, K. U. Jeong, S. H. Lee, M. Goh, Polym. Chem. 2017, 8, 2806.

[50]

I. Jeong, C. B. Kim, D. G. Kang, K. Jeong, S. G. Jang, N. You, S. Ahn, D. Lee, M. Goh, J. Polym. Sci. Pol. Chem. 2019, 57, 708.

[51]

M. S. Windberger, E. Dimitriou, S. Rendl, K. Wewerka, F. Wiesbrock, Polymers 2020, 13, 65.

[52]

F. Wang, L. Han, H. X. Wang, C. L. Ma, L. Liu, J. W. Wang, J. Li, Z. Y. Huang, in 2019 2nd International Conference on Electrical Materials and Power Equipment, ICEMPE, Guangzhou 2019.

[53]

Y. Liu, J. M. Chen, Y. H. Zhang, S. Gao, Z. J. Lu, Q. B. Xue, J. Polym. Sci. Pol. Phys. 2017, 55, 1813.

[54]

H. Yeo, A. M. Islam, N. H. You, S. Ahn, M. Goh, J. R. Hahn, S. G. Jang, Compos. Sci. Technol. 2017, 141, 99.

[55]

Y. Li, C. D. Gong, Z. Z. Hou, W. Y. Zhou, C. Liu, L. G. Peng, Y. Wu, Q. Shi, Q. W. Cheng, J. Appl. Polym. Sci. 2022, 139, e53077.

[56]

Z. Q. Feng, X. H. Liu, J. M. Liu, X. Chen, B. F. Chen, L. Y. Liang, Polym. Eng. Sci. 2023, 63, 932.

[57]

A. I. Olamilekan, H. Yeo, Macromol. Res. 2020, 28, 960.

[58]

S. Kawamoto, H. Fujiwara, S. Nishimura, Int. J. Hydrogen Energy 2016, 41, 7500.

[59]

T. Giang, J. Kim, Mol. Cryst. Liq. Cryst. 2016, 629, 12.

[60]

T. E. Trinh, K. Ku, H. Yeo, Adv. Mater. 2023, 35, 2209912.

[61]

M. Harada, N. Hamaura, M. Ochi, Y. Agari, Compos. B Eng. 2013, 55, 306.

[62]

M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama, H. Aoki, J. Polym. Sci. Pol. Phys. 2003, 41, 1739.

[63]

X. Zhong, X. T. Yang, K. P. Ruan, J. L. Zhang, H. T. Zhang, J. W. Gu, Macromol. Rapid. Commun. 2022, 43, 2100580.

[64]

T. Giang, J. Kim, J. Electron. Mater. 2017, 46, 627.

[65]

K. Y. Tian, S. Y. Yang, J. X. Niu, H. X. Wang, IEEE Access 2021, 9, 31575.

[66]

Y. You, W. L. Peng, P. Xie, M. Z. Rong, M. Q. Zhang, D. Liu, Mater. Today 2020, 33, 45.

[67]

M. Akatsuka, Y. Takezawa, J. Appl. Polym. Sci. 2003, 89, 2464.

[68]

T. Koda, T. Toyoshima, T. Komatsu, Y. Takezawa, A. Nishioka, K. Miyata, Polym. J. 2013, 45, 444.

[69]

K. Ku, S. Choe, H. Yeo, Mol. Syst. Des. Eng. 2022, 7, 520.

[70]

H. Harada, T. Saito, M. Tokita, Macromolecules 2022, 55, 1178.

[71]

Y. D. Shen, X. R. Wang, X. J. Lai, C. Z. Xu, Z. W. Li, Polym.-Plast. Technol. 2012, 51, 1077.

[72]

Z. Q. Kuang, Y. L. Chen, Y. L. Lu, L. Liu, S. Hu, S. P. Wen, Y. Y. Mao, L. Q. Zhang, Small 2015, 11, 1655.

[73]

P. Castell, M. Galià, A. Serra, Macromol. Chem. Phys. 2001, 202, 1649.

[74]

W. S. Liu, Z. G. Wang, L. Xiong, L. N. Zhao, Polymer 2010, 51, 4776.

[75]

M. Harada, M. Hirotani, M. Ochi, J. Appl. Polym. Sci. 2019, 136, 47891.

[76]

A. Shiota, C. K. Ober, Macromolecules 1997, 30, 4278.

[77]

W. Pang, J. W. Zhao, L. Zhao, Z. K. Zhang, S. Z. Zhu, J. Mol. Struct. 2015, 1096, 21.

[78]

Y. Z. Li, M. R. Kessler, Polymer 2013, 54, 5741.

[79]

M. Donnay, S. Tzavalas, E. Logakis, Compos. Sci. Technol. 2015, 110, 152.

[80]

A. M. Islam, H. Lim, N. H. You, S. Ahn, M. Goh, J. R. Hahn, H. Yeo, S. G. Jang, ACS Macro. Lett. 2018, 7, 1180.

[81]

X. H. Zhang, X. J. Chao, L. Lou, J. T. Fan, Q. Chen, B. Li, L. Ye, D. H. Shou, Compos. Commun. 2021, 23, 100595.

[82]

R. H. Zhang, X. T. Shi, L. Tang, Z. Liu, J. L. Zhang, Y. Q. Guo, J. W. Gu, Chin. J. Polym. Sci. 2020, 38, 730.

[83]

J. J. Dang, J. L. Zhang, M. K. Li, L. Dang, J. W. Gu, Polym. Chem. 2022, 13, 6046.

[84]

Y. Shoji, T. Higashihara, M. Tokita, J. Morikawa, J. Watanabe, M. Ueda, ACS Appl. Mater. Interfaces 2013, 5, 3417.

[85]

H. Q. Hu, M. Gopinadhan, C. O. Osuji, Soft Matter 2014, 10, 3867.

[86]

P. Zhang, P. Yuan, X. Jiang, S. P. Zhai, J. H. Zeng, Y. Q. Xian, H. B. Qin, D. G. Yang, Small 2018, 14, 1702769.

[87]

C. G. Li, Y. Li, C. D. Gong, K. P. Ruan, X. Zhong, P. Pan, C. Liu, J. W. Gu, X. T. Shi, J. Appl. Polym. Sci. 2021, 138, 49791.

[88]

H. Y. Niu, Y. J. Ren, H. C. Guo, K. Małycha, K. Orzechowski, S. L. Bai, Compos. Commun. 2020, 22, 100430.

[89]

Y. F. Xu, X. J. Wang, Q. Hao, Compos. Commun. 2021, 24, 100617.

[90]

J. J. Wu, C. X. Zhao, Y. T. Li, H. Li, D. Xiang, Z. M. Sun, X. Li, J. Polym. Res. 2021,

[91]

X. Y. Huang, T. Iizuka, P. K. Jiang, Y. Ohki, T. Tanaka, J. Phys. Chem. C 2012, 116, 13629.

[92]

H. L. Mo, X. Y. Huang, F. Liu, K. Yang, S. T. Li, P. K. Jiang, IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 906.

[93]

X. J. Liu, Z. H. Rao, Comput. Mater. Sci. 2020, 172, 109298.

[94]

Z. Q. Cai, J. Z. Sun, Q. Y. Zhou, J. L. Xu, J. Polym. Sci. Pol. Chem. 2007, 45, 727.

[95]

S. H. Song, H. Katagi, Y. Takezawa, Polymer 2012, 53, 4489.

[96]

P. Ramesh, L. Ravikumar, A. R. Burkanudeen, Polym.-Plast. Technol. 2012, 51, 140.

[97]

Y. Z. Zhao, Z. M. He, Q. Z. Ban, K. X. Li, S. Y. Ding, S. P. Tian, H. P. Ren, M. Zhu, Q. Ma, Z. C. Miao, Mol. Cryst. Liq. Cryst. 2021,

[98]

Y. Z. Li, P. Badrinarayanan, M. R. Kessler, Polymer 2013, 54, 3017.

[99]

L. Callau, J. A. Reina, A. Mantecón, Macromolecules 1999, 32, 7790.

[100]

R. Huo, Z. Zhang, N. Athir, Y. H. Fan, J. Liu, L. Shi, Phys. Chem. Chem. Phys. 2020, 22, 19735.

[101]

J. G. Gao, L. Huo, Y. G. Du, J. Appl. Polym. Sci. 2012, 125, 3329.

[102]

J. M. García, G. O. Jones, K. Virwani, B. D. McCloskey, D. J. Boday, G. M. Ter Huurne, H. W. Horn, D. J. Coady, A. M. Bintaleb, A. M. S. Alabdulrahman, F. Alsewailem, H. A. A. Almegren, J. L. Hedrick, Science 2014, 344, 732.

[103]

Y. R. Liu, Y. J. Zhou, Y. F. Xu, Polym. Chem. 2022, 13, 4462.

[104]

S. Tanaka, F. Hojo, Y. Takezawa, K. Kanie, A. Muramatsu, ACS Omega 2018, 3, 3562.

[105]

A. Mititelu-Mija, C. N. Cascaval, P. Navard, Des. Monomers Polym. 2005, 8, 487.

[106]

M. G. Lu, M. J. Shim, S. W. Kim, Macromol. Chem. Phys. 2001, 202, 223.

[107]

X. C. Liu, X. Yu, Z. Yang, X. R. Zhuang, H. Guo, X. L. Luo, J. Y. Chen, Y. Z. Liang, Y. Chen, J. Electron. Mater. 2023, 52, 2831.

[108]

G. X. Lv, E. Jensen, N. S. Shan, C. M. Evans, D. G. Cahill, ACS Appl. Polym. Mater. 2021, 3, 1555.

[109]

G. X. Lv, E. Jensen, C. M. Evans, D. G. Cahill, ACS Appl. Polym. Mater. 2021, 3, 4430.

[110]

Y. Li, C. G. Li, L. Zhang, W. Y. Zhou, J. Mater. Sci. Mater. Electron. 2019, 30, 8329.

[111]

B. C. Benicewicz, M. E. Smith, J. D. Earls, R. D. Priester, S. M. Setz, R. S. Duran, E. P. Douglas, Macromolecules 1998, 31, 4730.

[112]

J. W. Yu, J. Jung, Y. M. Choi, J. H. Choi, J. Yu, J. K. Lee, N. H. You, M. Goh, Polym. Chem. 2015, 7, 36.

[113]

L. D. Mathews, N. Hameed, Fundamentals of Thermal Conductivity in the Epoxy Polymer Network, Springer Nature, Singapore 2023.

[114]

S. Y. Yang, Z. Y. Huang, 2021 3rd International Conference on Electrical Materials and Power Equipment (ICEMPE), Chongqing, April, 2021.

[115]

H. H. Wang, K. Y. Tian, J. X. Niu, Z. Y. Huang, J. Li, IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 11.

[116]

F. Q. Tian, J. M. Cao, W. L. Ma, Polym. Test. 2023, 120, 107940.

[117]

Y. Li, L. Wu, X. X. Huang, C. D. Gong, Q. Shi, W. Y. Zhou, Q. W. Cheng, Polym. Compos. 2023, 44, 27581.

[118]

H. Yang, G. M. Yuan, E. X. Jiao, K. X. Wang, W. J. Diao, Z. Li, K. Wu, J. Shi, Eur. Polym. J. 2023, 198, 112378.

[119]

G. H. He, H. Luo, C. F. Yan, Y. T. Wan, D. Wu, H. Luo, Y. Liu, S. Chen, Energy Environ. Mater. 2023, e12577.

[120]

C. Ortiz, R. Kim, E. Rodighiero, C. K. Ober, E. J. Kramer, Macromolecules 1998, 31, 4074.

[121]

D. G. Kang, H. Ko, J. Koo, S. I. Lim, J. S. Kim, Y. Yu, C. R. Lee, N. Kim, K. U. Jeong, ACS Appl. Mater. Interfaces 2018, 10, 35557.

[122]

B. Y. Cao, Y. W. Li, J. Kong, H. Chen, Y. Xu, K. L. Yung, A. Cai, Polymer 2011, 52, 1711.

[123]

W. Y. Zhou, Z. M. Dang, X. W. Ding, Heat Conductive Polymer Composites, National Defense Industry Press, Beijing 2017.

[124]

W. Y. Zhou, F. Wang, Y. T. Yang, Y. Wang, Y. Y. Zhao, L. Q. Zhang, Prog. Chem. 2023, 35, 1106.

[125]

W. Y. Zhou, T. Yao, M. X. Meng, Y. T. Yang, J. Zheng, J. Liu, IET Nanodielectr. 2023, 1, 165.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/