Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors

Chun Li , Zihan Song , Minliang Liu , Enrico Lepre , Markus Antonietti , Junwu Zhu , Jian Liu , Yongsheng Fu , Nieves López-Salas

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12695

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12695 DOI: 10.1002/eem2.12695
RESEARCH ARTICLE

Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors

Author information +
History +
PDF

Abstract

Sodium-ion capacitors (SICs) have great potential in energy storage due to their low cost, the abundance of Na, and the potential to deliver high energy and power simultaneously. This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons. This study elucidates that these graphitic nanodomains are beneficial for Na+ storage. The obtained N-doped carbon (As8Mg) electrode achieved a reversible capacity of 254 mA h g–1 at 0.1 A g–1. Moreover, the As8Mg-based SIC device achieves high combinations of power/energy densities (53 W kg–1 at 224 Wh kg–1 and 10 410 W kg–1 at 51 Wh kg–1) with outstanding cycle stability (99.7% retention over 600 cycles at 0.2 A g–1). Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.

Keywords

anode / graphitic nanodomains / N-doped carbons / sodium-ion capacitor / template

Cite this article

Download citation ▾
Chun Li, Zihan Song, Minliang Liu, Enrico Lepre, Markus Antonietti, Junwu Zhu, Jian Liu, Yongsheng Fu, Nieves López-Salas. Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors. Energy & Environmental Materials, 2024, 7(4): e12695 DOI:10.1002/eem2.12695

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. G.Amatucci, F.Badway, A.Du Pasquier, T.Zheng, J. Electrochem. Soc. 2001, 148, A930.

[2]

D. P.DiVincenzo, E. J. Mele, Phys. Rev. B 1985, 32, 2538.

[3]

D. A.Stevens, J. R.Dahn, J. Electrochem. Soc. 2001, 148, A803.

[4]

P.Cai, K.Zou, X.Deng, B. Wang, M.Zheng, L.Li, H.Hou, G.Zou, X. Ji, Adv. Energy Mater. 2021, 11, 2003804.

[5]

C.Choi, D. S.Ashby, D. M.Butts, R. H. DeBlock, Q.Wei, J.Lau, B.Dunn, Nat. Rev. Mater. 2020, 5, 5.

[6]

Y.Wang, Y.Song, Y.Xia, Chem. Soc. Rev. 2016, 45, 5925.

[7]

Y.Shao, M. FEl-Kady, J.Sun, Y.Li, Q.Zhang, M.Zhu, H. Wang, B.Dunn, R. B.Kaner, Chem. Rev. 2018, 118, 9233.

[8]

H.Wang, D.Mitlin, J.Ding, Z.Li, K.Cui, J. Mater. Chem. A 2016, 4, 5149.

[9]

S. K.Park, S. H.Kwon, S. G.Lee, M. S. Choi, D. H.Suh, P.Nakhanivej, H.Lee, H. S.Park, ACS Energy Lett. 2018, 3, 724.

[10]

D.Li, C.Ye, X.Chen, S. Wang, H.Wang, J. Power Sources 2018, 382, 116.

[11]

J.Ding, Z.Li, K.Cui, S. Boyer, D.Karpuzov, D.Mitlin, Nano Energy 2016, 23, 129.

[12]

H.-J.Kang, Y. S.Huh, W. B.Im, Y.-S. Jun, ACS Nano 2019, 13, 11935.

[13]

C.-C.Hu, K.-H.Chang, M.-C.Lin, Y.-T. Wu, Nano Lett. 2006, 6, 2690.

[14]

M.Okubo, E.Hosono, J.Kim, M.Enomoto, N.Kojima, T.Kudo, H.Zhou, I.Honma, J. Am. Chem. Soc. 2007, 129, 7444.

[15]

D.Choi, G. E.Blomgren, P. N.Kumta, Adv. Mater. 2006, 18, 1178.

[16]

Q.Wei, R. H.DeBlock, D. M.Butts, C.Choi, B.Dunn, Energy Environ. Mater. 2020, 3, 221.

[17]

J. B.Cook, H.-S.Kim, T. C.Lin, C.-H. Lai, B.Dunn, S. H.Tolbert, Adv. Energy Mater. 2017, 7, 1601283.

[18]

T.Or, K.Kaliyappan, G.Li, S.Abureden, Z.Bai, Z.Chen, Electrochim. Acta 2020, 342, 136024.

[19]

N.Fechler, M.Antonietti, Nano Today 2015, 10, 593.

[20]

Z.Tian, Y.Zhang, J.Zhu, Q. Li, T.Liu, M.Antonietti, Adv. Energy Mater. 2021, 11, 2102489.

[21]

B.-H.Hou, Y.-Y.Wang, Q.-L.Ning, W.-H. Li, X.-T.Xi, X.Yang, H.-J.Liang, X.Feng, X.-L. Wu, Adv. Mater. 2019, 31, 1903125.

[22]

B.Cao, H.Liu, B.Xu, Y.Lei, X.Chen, H. Song, J. Mater. Chem. A 2016, 4, 6472.

[23]

X.Yao, Y.Ke, W.Ren, X. Wang, F.Xiong, W.Yang, M.Qin, Q.Li, L.Mai, Adv. Energy Mater. 2019, 9, 1803260.

[24]

J.Chmiola, G.Yushin, Y.Gogotsi, C.Portet, P.Simon, P. L.Taberna, Science 2006, 313, 1760.

[25]

Z.Le, F.Liu, P.Nie, X. Li, X.Liu, Z.Bian, G.Chen, H. B.Wu, Y. Lu, ACS Nano 2017, 11, 2952.

[26]

L.Zhou, K.Zhang, Z.Hu, Z.Tao, L.Mai, Y.-M. Kang, S.-L.Chou, J.Chen, Adv. Energy Mater. 2018, 8, 1701415.

[27]

F.Sun, X.Liu, H. B.Wu, L. Wang, J.Gao, H.Li, Y.Lu, Nano Lett. 2018, 18, 3368.

[28]

L.Xie, F.Su, L.Xie, X. Guo, Z.Wang, Q.Kong, G.Sun, A.Ahmad, X. Li, Z.Yi, C.Chen, Mater. Chem. Front. 2020, 4, 2610.

[29]

L.Chen, W.Duan, B.Yang, B. Liu, H.Li, J.Lang, J.Chen, ChemistrySelect 2020, 5, 5824.

[30]

R.Wang, S.Wang, X.Peng, Y. Zhang, D.Jin, P. K.Chu, L.Zhang, ACS Appl. Mater. Interfaces 2017, 9, 32745.

[31]

Y.-B.Yin, J.-J.Xu, Q.-C.Liu, X.-B. Zhang, Adv. Mater. 2016, 28, 7494.

[32]

J.Chen, B.Yang, H.Hou, H. Li, L.Liu, L.Zhang, X.Yan, Adv. Energy Mater. 2019, 9, 1803894.

[33]

J.Pampel, A.Mehmood, M.Antonietti, T. P.Fellinger, Mater. Horiz. 2017, 4, 493.

[34]

J.Pampel, Ionothermal Carbon Materials. Doctoral Thesis thesis, Universität Potsdam, Potsdam, Germany 2016.

[35]

B.Marczewska, K.Marczewski, Z. Phys. Chem. 2010, 224, 795.

[36]

G.-J.Lee, S.-I.Pyun, Langmuir 2006, 22, 10659.

[37]

C.Merlet, B.Rotenberg, P. A.Madden, P.-L.Taberna, P.Simon, Y.Gogotsi, M. Salanne, Nat. Mater. 2012, 11, 306.

[38]

Y.He, R.Qiao, J.Vatamanu, O. Borodin, D.Bedrov, J.Huang, B. G.Sumpter, J. Phys. Chem. Lett. 2016, 7, 36.

[39]

K.Ramachandran, S. AEl-Khodary, G.Subburam, Y.Cui, S.Li, J.Li, J.Wang, X.Liu, J. Lian, H.Li, Electrochim. Acta 2022, 403, 139675.

[40]

J. R.Dahn, T.Zheng, Y.Liu, J. S. Xue, Science 1995, 270, 590.

[41]

Z.Wang, L.Qie, L.Yuan, W. Zhang, X.Hu, Y.Huang, Carbon 2013, 55, 328.

[42]

D.Dewar, A. M.Glushenkov, Energ. Environ. Sci. 2021, 14, 1380.

[43]

J.Gu, Z.Du, C.Zhang, S. Yang, Adv. Energy Mater. 2016, 6, 1600917.

[44]

Y.Xie, Y.Chen, L.Liu, P. Tao, M.Fan, N.Xu, X.Shen, C.Yan, Adv. Mater. 2017, 29, 1702268.

[45]

H.He, D.Huang, Y.Tang, Q. Wang, X.Ji, H.Wang, Z.Guo, Nano Energy 2019, 57, 728.

[46]

X.Pu, D.Zhao, C.Fu, Z.Chen, S.Cao, C. Wang, Y.Cao, Angew. Chem. Int. Ed. 2021, 60, 21310.

[47]

B.Yang, J.Chen, S.Lei, R. Guo, H.Li, S.Shi, X.Yan, Adv. Energy Mater. 2018, 8, 1702409.

[48]

S.Liu, Z.Cai, J.Zhou, M. Zhu, A.Pan, S.Liang, J. Mater. Chem. A 2017, 5, 9169.

[49]

Z.Chen, V.Augustyn, X.Jia, Q.Xiao, B.Dunn, Y.Lu, ACS Nano 2012, 6, 4319.

[50]

J.Ding, H.Wang, Z.Li, K.Cui, D.Karpuzov, X. Tan, A.Kohandehghan, D.Mitlin, Energ. Environ. Sci. 2015, 8, 941.

[51]

Y. S.Yun, S. Y.Cho, H.Kim, H.-J. Jin, K.Kang, ChemElectroChem 2015, 2, 359.

[52]

P.Han, X.Han, J.Yao, L. Zhang, X.Cao, C.Huang, G.Cui, J. Power Sources 2015, 297, 457.

[53]

J.Choi, M. E.Lee, S.Lee, H.-J. Jin, Y. S.Yun, ACS Appl. Energy Mater. 2019, 2, 1185.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/