Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries

Hyunji Park , Hyojin Kye , Jong-Sung Lee , Young-Chang Joo , Dong Joo Min , Bong-Gi Kim , Soo Young Park , Ji Eon Kwon

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12694

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12694 DOI: 10.1002/eem2.12694
RESEARCH ARTICLE

Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries

Author information +
History +
PDF

Abstract

Most organic electrode materials (OEMs) for rechargeable batteries employ n-type redox centers, whose redox potentials are intrinsically limited <3.0 V versus Li+/Li. However, p-type materials possessing high redox potentials experience low specific capacities because they are capable of only a single redox reaction within the stable electrochemical window of typical electrolytes. Herein, we report 5,11-diethyl-5,11-dihydroindolo[3,2-b]carbazole (DEICZ) as a novel p-type OEM, exhibiting stable plateaus at high discharge potentials of 3.44 and 4.09 V versus Li+/Li. Notably, the second redox potential of DEICZ is within the stable electrochemical window. The mechanism of the double redox reaction is investigated using both theoretical calculations and experimental measurements, including density functional theory calculations, ex situ electron spin resonance, and X-ray photoelectron spectroscopy. Finally, hybridization with single-walled carbon nanotubes (SWCNT) improves the cycle stability and rate performance of DEICZ owing to the π–π interactions between the SWCNT and co-planar molecular structure of DEICZ, preventing the dissolution of active materials into the electrolyte. The DEICZ/SWCNT composite electrode maintains 70.4% of its initial specific capacity at 1-C rate and also exhibits high-rate capability, even performing well at 100-C rate. Furthermore, we demonstrate its potential for flexible batteries after applying 1000 bending stresses to the composite electrode.

Keywords

composite electrodes / flexible batteries / indolocarbazoles / organic rechargeable batteries / p-type

Cite this article

Download citation ▾
Hyunji Park, Hyojin Kye, Jong-Sung Lee, Young-Chang Joo, Dong Joo Min, Bong-Gi Kim, Soo Young Park, Ji Eon Kwon. Indolocarbazole-Based Small Molecule Cathode-Active Material Exhibiting Double Redox for High-Voltage Li-Organic Batteries. Energy & Environmental Materials, 2024, 7(5): e12694 DOI:10.1002/eem2.12694

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Yoshino, Angew. Chem. Int. Ed. Engl. 2012, 51, 5798.

[2]

D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.

[3]

J. J. Shea, C. Luo, ACS Appl. Mater. Interfaces 2020, 12, 5361.

[4]

Y. Lu, Q. Zhang, L. Li, Z. Niu, J. Chen, Chem 2018, 4, 2786.

[5]

T. Ma, Q. Zhao, J. Wang, Z. Pan, J. Chen, Angew. Chem. Int. Ed. Engl. 2016, 55, 6428.

[6]

Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. Engl. 2019, 58, 7020.

[7]

W. Huang, S. Zheng, X. Zhang, W. Zhou, W. Xiong, J. Chen, Energy Storage Mater. 2020, 26, 465.

[8]

A. Slesarenko, I. K. Yakuschenko, V. Ramezankhani, V. Sivasankaran, O. Romanyuk, A. V. Mumyatov, I. Zhidkov, S. Tsarev, E. Z. Kurmaev, A. F. Shestakov, O. V. Yarmolenko, K. J. Stevenson, P. A. Troshin, J. Power Sources 2019, 435, 226724.

[9]

Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, J. Am. Chem. Soc. 2014, 136, 16461.

[10]

A. Bhargav, Y. Ma, K. Shashikala, Y. Cui, Y. Losovyj, Y. Fu, J. Mater. Chem. A 2017, 5, 25005.

[11]

J. Heiska, M. Nisula, M. Karppinen, J. Mater. Chem. A 2019, 7, 18735.

[12]

H. Kye, Y. Kang, D. Jang, J. E. Kwon, B.-G. Kim, Adv. Energy Sustain. Res. 2022, 3, 2200030.

[13]

T. Godet-Bar, J.-C. Leprêtre, O. Le Bacq, J.-Y. Sanchez, A. Deronzier, A. J. P. C. C. P. Pasturel, Phys. Chem. Chem. Phys. 2015, 17, 25283.

[14]

C. Zhang, X. Yang, W. Ren, Y. Wang, F. Su, J.-X. J. J. O. P. S. Jiang, J. Power Sources 2016, 317, 49.

[15]

M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. J. E. Esser, Energy Environ. Sci. 2017, 10, 2334.

[16]

M. Lee, J. Hong, B. Lee, K. Ku, S. Lee, C. B. Park, K. J. G. C. Kang, Green Chem. 2017, 19, 2980.

[17]

S. Lee, K. Lee, K. Ku, J. Hong, S. Y. Park, J. E. Kwon, K. J. A. E. M. Kang, Adv. Energy Mater. 2020, 10, 2001635.

[18]

S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Chem 2019, 5, 753.

[19]

V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.

[20]

J. A. Kowalski, M. D. Casselman, A. P. Kaur, J. D. Milshtein, C. F. Elliott, S. Modekrutti, N. H. Attanayake, N. Zhang, S. R. Parkin, C. Risko, F. R. Brushett, S. A. Odom, J. Mater. Chem. A 2017, 5, 24371.

[21]

J. Lv, J. Ye, G. Dai, Z. Niu, Y. Sun, X. Zhang, Y. Zhao, J. Energy Chem. 2020, 47, 256.

[22]

F. Otteny, M. Kolek, J. Becking, M. Winter, P. Bieker, B. Esser, Adv. Energy Mater. 2018, 8, 1802151.

[23]

Y. R. In, J. M. Han, J. E. Kwon, B.-G. Kim, H. C. Moon, Chem. Eng. J. 2022, 433, 133808.

[24]

S. Wakim, B. R. Aïch, Y. Tao, M. Leclerc, Polym. Rev. 2008, 48, 432.

[25]

H. Park, H. Kye, B. H. Jeong, J. Heo, S. Hwang, B.-G. Kim, H. J. Park, Dyes Pigments 2022, 197, 109837.

[26]

Z. Li, J. Park, H. Park, J. Lee, Y. Kang, T. K. Ahn, B.-G. Kim, H. J. Park, Nano Energy 2020, 78, 105159.

[27]

G. Gokce, M. Icli Ozkut, Org. Electron. 2018, 52, 317.

[28]

K. S. Park, S. M. Salunkhe, I. Lim, C. G. Cho, S. H. Han, M. M. Sung, Adv. Mater. 2013, 25, 3351.

[29]

I. Petrikyte, I. Zimmermann, K. Rakstys, M. Daskeviciene, T. Malinauskas, V. Jankauskas, V. Getautis, M. K. Nazeeruddin, Nanoscale 2016, 8, 8530.

[30]

G. Dai, Y. Gao, Z. Niu, P. He, X. Zhang, Y. Zhao, H. Zhou, ChemSusChem 2020, 13, 2264.

[31]

M. E. Bhosale, K. Krishnamoorthy, Chem. Mater. 2015, 27, 2121.

[32]

S. D. Collins, N. A. Ran, M. C. Heiber, T.-Q. Nguyen, Adv. Energy Mater. 2017, 7, 1602242.

[33]

J. Yang, H. Su, Z. Wang, P. Sun, Y. Xu, ChemSusChem 2020, 13, 2436.

[34]

M. A. Dobrowolski, M. K. Cyranski, Z. Wrobel, Phys. Chem. Chem. Phys. 2016, 18, 11813.

[35]

G.-J. Kang, S. He, H.-Y. Cheng, X.-F. Ren, J. Photochem. Photobiol. A Chem. 2019, 383, 111979.

[36]

F. Otteny, V. Perner, D. Wassy, M. Kolek, P. Bieker, M. Winter, B. Esser, ACS Sustain. Chem. Eng. 2020, 8, 238.

[37]

K. Lee, I. E. Serdiuk, G. Kwon, D. J. Min, K. Kang, S. Y. Park, J. E. Kwon, Energy Environ. Sci. 2020, 13, 4142.

[38]

C. O. Laoire, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, J. Electrochem. Soc. 2011, 158, A302.

[39]

H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579.

[40]

K. A. Narayana, M. D. Casselman, C. F. Elliott, S. Ergun, S. R. Parkin, C. Risko, S. A. J. C. Odom, J. Chem. Phys. 2015, 16, 1179.

[41]

T. A. Popp, F. Bracher, Synthesis 2015, 47, 3333.

[42]

H. Gilman, L. O. Moore, J. Am. Chem. Soc. 1957, 79, 3485.

[43]

M. Akimoto, T. Kawano, Y. Nagase, M. Kawamoto, T. J. T. O. T. M. R. S. O. J. Wada, Trans. Mater. Res. Soc. 2009, 34, 141.

[44]

H. Jiang, P. Hu, J. Ye, A. Chaturvedi, K. K. Zhang, Y. Li, Y. Long, D. Fichou, C. Kloc, W. Hu, Angew. Chem. Int. Ed. Engl. 2018, 57, 8875.

[45]

P.-L. T. Boudreault, S. Wakim, N. Blouin, M. Simard, C. Tessier, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2007, 129, 9125.

[46]

Z. Zhang, E. P. L. Crovini, B. A. Naqvi, D. B. Cordes, A. M. Z. Slawin, P. Sahay, W. Brütting, I. D. W. Samuel, S. Bräse, E. Zysman-Colman, Adv. Optical Mater. 2020, 8, 2001354.

[47]

S. Jana, M. Trivedi, A. Branton, D. Trivedi, G. Nayak, G. Saikia, Pharm. Anal. Acta 2015, 6, 100435.

[48]

S.-H. Hsiao, S.-W. Lin, Polym. Chem. 2016, 7, 198.

[49]

C. O. Laoire, E. Plichta, M. Hendrickson, S. Mukerjee, K. M. Abraham, Electrochim. Acta 2009, 54, 6560.

[50]

F. Yang, D. Wang, Y. Zhao, K.-L. Tsui, S. J. Bae, Energy 2018, 145, 486.

[51]

S. Chen, T. Jia, G. Zhou, C. Zhang, Q. Hou, Y. Wang, S. Luo, G. Shi, Y. Zeng, J. Electrochem. Soc. 2019, 166, A2543.

[52]

D. J. Min, K. Lee, S. Y. Park, J. E. Kwon, ChemSusChem 2020, 13, 2303.

[53]

L. Sieuw, A. Jouhara, É. Quarez, C. Auger, J.-F. Gohy, P. Poizot, A. Vlad, Chem. Sci. 2019, 10, 418.

[54]

C. Li, J. Xue, A. Huang, J. Ma, F. Qing, A. Zhou, Z. Wang, Y. Wang, J. Li, Electrochim. Acta 2019, 297, 850.

[55]

X. Zhao, Z. Zhao, M. Yang, H. Xia, T. Yu, X. Shen, ACS Appl. Mater. Interfaces 2017, 9, 2535.

[56]

M. Šetka, R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavová, S. Vallejos, Sci. Rep. 2019, 9, 8465.

[57]

M. Cheng, W. Tang, Y. Li, K. Zhu, Catal. Today 2016, 274, 116.

[58]

M. Lee, J. Hong, H. Kim, H. D. Lim, S. B. Cho, K. Kang, C. B. Park, Adv. Mater. 2014, 26, 2558.

[59]

D. N. Futaba, T. Yamada, K. Kobashi, M. Yumura, K. Hata, J. Am. Chem. Soc. 2011, 133, 5716.

[60]

S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, K. Kaneko, Nano Lett. 2007, 7, 583.

[61]

H. Gwon, H.-S. Kim, K. U. Lee, D.-H. Seo, Y. C. Park, Y.-S. Lee, B. T. Ahn, K. Kang, Energy Environ. Sci. 2011, 4, 1277.

[62]

D. Ogi, Y. Fujita, M. Kato, T. Yamauchi, T. Shirahata, M. Yao, Y. Misaki, Eur. J. Org. Chem. 2019, 2019, 2725.

[63]

M. Fu, C. Zhang, Y. Chen, K. Fan, G. Zhang, J. Zou, Y. Gao, H. Dai, X. Wang, C. Wang, Chem. Commun. 2022, 58, 11993.

[64]

Y. Zheng, H. Ji, J. Liu, Z. Wang, J. Zhou, T. Qian, C. Yan, Nano Lett. 2022, 22, 3473.

[65]

M. Rajesh, F. Dolhem, C. Davoisne, M. Becuwe, ChemSusChem 2020, 13, 2364.

[66]

M. Kato, K.-I. Senoo, M. Yao, Y. Misaki, J. Mater. Chem. A 2014, 2, 6747.

[67]

Y. Ham, V. Ri, J. Kim, Y. Yoon, J. Lee, K. Kang, K.-S. An, C. Kim, S. Jeon, Nano Res. 2021, 14, 1382.

[68]

I. A. Rodríguez-Pérez, Z. Jian, P. K. Waldenmaier, J. W. Palmisano, R. S. Chandrabose, X. Wang, M. M. Lerner, R. G. Carter, X. Ji, ACS Energy Lett. 2016, 1, 719.

[69]

V. W.-H. Lau, J. Zhang, C.-G. Lee, Y.-M. Kang, Chem. Eng. J. 2022, 446, 137292.

[70]

Y. Inatomi, N. Hojo, T. Yamamoto, S.-I. Watanabe, Y. Misaki, ChemPlusChem 2012, 77, 973.

[71]

P. Oh, J. Yun, J. H. Choi, G. Nam, S. Park, T. J. Embleton, M. Yoon, S. H. Joo, S. H. Kim, H. Jang, H. Kim, M. G. Kim, S. K. Kwak, J. Cho, Adv. Energy Mater. 2023, 13, 2202237.

[72]

R. Shan, X. Lu, Y. Xu, K. Shen, Y. Xia, Y. Cai, J. Yao, Q. Mao, Y. Wang, T. Ji, Chem. Eng. Sci. 2023, 268, 118416.

[73]

K. Jia, J. Ma, J. Wang, Z. Liang, G. Ji, Z. Piao, R. Gao, Y. Zhu, Z. Zhuang, G. Zhou, H.-M. Cheng, Adv. Mater. 2023, 35, 2208034.

[74]

P. Vanaphuti, S. Bong, L. Ma, S. Ehrlich, Y. Wang, ACS Appl. Energy Mater. 2020, 3, 4852.

[75]

H.-H. Ryu, N.-Y. Park, J. H. Seo, Y.-S. Yu, M. Sharma, R. Mücke, P. Kaghazchi, C. S. Yoon, Y.-K. Sun, Mater. Today 2020, 36, 73.

[76]

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phy. Chem. B 2009, 113, 6378.

[77]

E. W. C. Spotte-Smith, S. M. Blau, X. Xie, H. D. Patel, M. Wen, B. Wood, S. Dwaraknath, K. A. Persson, Sci. Data 2021, 8, 203.

[78]

C. Chen, S. Zhang, Y. Zhu, Y. Qian, Z. Niu, J. Ye, Y. Zhao, X. Zhang, RSC Adv. 2018, 8, 18762.

[79]

S. Lee, J. E. Kwon, J. Hong, S. Y. Park, K. Kang, J. Mater. Chem. A 2019, 7, 11438.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/