Interpretable Machine Learning-Assisted High-Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C-N Coordination

Jinxin Sun , Anjie Chen , Junming Guan , Ying Han , Yongjun Liu , Xianghong Niu , Maoshuai He , Li Shi , Jinlan Wang , Xiuyun Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12693

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12693 DOI: 10.1002/eem2.12693
RESEARCH ARTICLE

Interpretable Machine Learning-Assisted High-Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C-N Coordination

Author information +
History +
PDF

Abstract

Understanding the correlation between the fundamental descriptors and catalytic performance is meaningful to guide the design of high-performance electrochemical catalysts. However, exploring key factors that affect catalytic performance in the vast catalyst space remains challenging for people. Herein, to accurately identify the factors that affect the performance of N2 reduction, we apply interpretable machine learning (ML) to analyze high-throughput screening results, which is also suited to other surface reactions in catalysis. To expound on the paradigm, 33 promising catalysts are screened from 168 carbon-supported candidates, specifically single-atom catalysts (SACs) supported by a BC3 monolayer (TM@VB/C-Nn = 0–3-BC3) via high-throughput screening. Subsequently, the hybrid sampling method and XGBoost model are selected to classify eligible and non-eligible catalysts. Through feature interpretation using Shapley Additive Explanations (SHAP) analysis, two crucial features, that is, the number of valence electrons (Nv) and nitrogen substitution (Nn), are screened out. Combining SHAP analysis and electronic structure calculations, the synergistic effect between an active center with low valence electron numbers and reasonable C-N coordination (a medium fraction of nitrogen substitution) can exhibit high catalytic performance. Finally, six superior catalysts with a limiting potential lower than -0.4 V are predicted. Our workflow offers a rational approach to obtaining key information on catalytic performance from high-throughput screening results to design efficient catalysts that can be applied to other materials and reactions.

Keywords

electrochemical nitrogen reduction / feature engineering / high-throughput screening / machine learning

Cite this article

Download citation ▾
Jinxin Sun, Anjie Chen, Junming Guan, Ying Han, Yongjun Liu, Xianghong Niu, Maoshuai He, Li Shi, Jinlan Wang, Xiuyun Zhang. Interpretable Machine Learning-Assisted High-Throughput Screening for Understanding NRR Electrocatalyst Performance Modulation between Active Center and C-N Coordination. Energy & Environmental Materials, 2024, 7(5): e12693 DOI:10.1002/eem2.12693

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M.-A. Legare, G. Belanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science 2018, 359, 896.

[2]

J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636.

[3]

G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771.

[4]

Y. Gong, H. Li, J. Wu, X. Song, X. Yang, X. Bao, X. Han, M. Kitano, J. Wang, H. Hosono, J. Am. Chem. Soc. 2022, 144, 8683.

[5]

S. Wang, L. Shi, X. Bai, Q. Li, C. Ling, J. Wang, Acs Central Sci. 2020, 6, 1762.

[6]

K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen, J. K. Norskov, Science 2005, 307, 555.

[7]

Y. Lin, Y. Feng, H. Zhou, Y. Han, H. Sun, L. Shi, L. Meng, M. Zhou, Y. Liu, X. Zhang, Appl. Sur. Sci. 2022, 593, 153338.

[8]

A. R. Singh, B. A. Rohr, M. J. Statt, J. A. Schwalbe, M. Cargnello, J. K. Norskov, ACS Catal. 2019, 9, 8316.

[9]

X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, Adv. Funct. Mater. 2021, 31, 2008056.

[10]

J. Sun, P. Xia, Y. Lin, Y. Zhang, A. Chen, L. Shi, Y. Liu, X. Niu, A. He, X. Zhang, Nanoscale Horiz. 2023, 8, 211.

[11]

Z. Chen, J. Zhao, L. Yin, Z. Chen, J. Mater. Chem. A 2019, 7, 13284.

[12]

E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónssonac, J. K. Nørskov, Phys. Chem. Chem. Phys. 2012, 14, 1235.

[13]

J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480.

[14]

J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, ChemSusChem 2015, 8, 2180.

[15]

Z. Xue, X. Zhang, J. Qin, R. Liu, Nano Energy 2021, 80, 105527.

[16]

C. Huang, G. Li, L. Yang, E. Ganz, ACS Appl. Mater. Interfaces 2021, 13, 608.

[17]

C. Huang, S. Lv, C. Li, B. Peng, G. Li, L. Yang, Nano Res. 2022, 15, 4039.

[18]

Y. Chen, X. Zhang, J. Qin, R. Liu, Nanoscale 2021, 13, 13437.

[19]

C. B. Hilton, A. Milinovich, C. Felix, npj Digit. Med. 2020, 3, 51.

[20]

R. Dazeley, P. Vamplew, C. Foale, C. Young, S. Aryal, F. Cruz, Artif. Intell. 2021, 299, 103525.

[21]

A. Nadernezhad, J. Groll, Adv. Sci. 2022, 9, 2202638.

[22]

M. Wu, E. Tikhonov, A. Tudi, I. Kruglov, X. Hou, C. Xie, S. Pan, Z. Yang, Adv. Mat. 2023, 35, 2300848.

[23]

J. A. Esterhuizen, B. R. Goldsmith, S. Linic, Nat. Catal. 2022, 5, 175.

[24]

C. Grojean, A. Paul, Z. Qian, I. Strumke, Nat. Rev. Phys. 2022, 4, 284.

[25]

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S.-I. Lee, Nat. Mach. Intell. 2020, 2, 56.

[26]

G. Baryannis, S. Dani, G. Antoniou, Future Gener. Comp. Sy. 2019, 101, 993.

[27]

I. Ibarguren, J. M. Pérez, J. Muguerza, O. Arbelaitz, A. Yera, Inform. Sci. 2022, 583, 219.

[28]

J. Gong, S. Chu, R. K. Mehta, A. J. H. McGaughey, npj Comput. Mater. 2022, 8, 140.

[29]

J. Shin, S. Son, Y. Cha, Sustain. Cities Soc. 2022, 87, 104255.

[30]

Y. Liua, Y. Liua, B. Yua, S. Zhong, Z. Hu, Pattern Recog. 2023, 133, 109008.

[31]

R. Zhao, X. Chen, Z. Chen, Med. Image Anal. 2022, 75, 102295.

[32]

R. Miyamoto, C. Louie, Matter Mater. Phys. 1994, 50, 18360.

[33]

Y. Zhou, G. Gao, W. Chu, L.-W. Wang, Nanoscale 2021, 13, 1331.

[34]

H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J. Xue, H. Wang, Adv. Mater. 2018, 30, 1803694.

[35]

Y. Zhang, J. Hu, C. Zhang, Y. Liu, M. Xu, Y. Xue, L. Liu, J. Mater. Chem. A 2020, 8, 9091.

[36]

L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. , S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, Angew. Chem. Int. Ed. 2019, 58, 2525.

[37]

S. A. Lee, J. W. Yang, S. Choi, H. W. Jang, Exp. Dermatol. 2021, 1, 20210012.

[38]

J. Kim, H. Kim, G. H. Han, S. Hong, J. Park, J. Bang, S. Y. Kim, S. H. Ahn, Exp. Dermatol. 2022, 2, 20210077.

[39]

M. Zhao, B. Song, L. Yang, ACS Appl. Mater. Interfaces 2021, 13, 26109.

[40]

D. Deng, B. Song, C. Li, L. M. Yang, J. Phys. Chem. C 2022, 126, 20816.

[41]

S. Chen, Y. Gao, W. Wang, O. V. Prezhdo, L. Xu, ACS Nano 2023, 17, 1522.

[42]

C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 2018, 8, 7517.

[43]

Z. Ma, Z. Cui, C. Xiao, W. Dai, Y. Lv, Q. Li, R. Sa, Nanoscale 2020, 12, 1541.

[44]

C. Ren, S. Lu, Y. Wu, Y. Ouyang, Y. Zhang, Q. Li, C. Ling, J. Wang, J. Am. Chem. Soc. 2022, 144, 12874.

[45]

Y. Kim, Y. Kim, Cities Soc. 2022, 79, 103677.

[46]

N. Nordin, Z. Zainol, M. H. M. Noor, L. F. Chan, Asian J. Psychiatry 2023, 79, 103316.

[47]

T. Kuno, Y. Sahashi, S. Kawahito, M. Takahashi, M. Iwagami, N. N. Egorova, J. Med. Virol. 2022, 94, 958.

[48]

S. Lu, Q. Zhou, Y. Guo, J. Wang, Chem 2022, 8, 769.

[49]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[50]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[51]

E. J. Baerends, Theor. Chem. Accounts 2000, 103, 265.

[52]

G. Kresse, J. Furthmüller, Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169.

[53]

S. Froyen, Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 39, 3168.

[54]

L. Chen, Q. Wang, H. Gong, M. Xue, Appl. Surf. Sci. 2021, 546, 149131.

[55]

Z. Wei, J. He, Y. Yang, J. Energy Chem. 2021, 53, 303.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/