Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries

Hui Zhang , Xingwu Zhai , Xin Cao , Zhihao Liu , Xinfeng Tang , Zhihong Hu , Hang Wang , Zhandong Wang , Yang Xu , Wei He , Wei Zheng , Min Zhou , ZhengMing Sun

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12692

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12692 DOI: 10.1002/eem2.12692
RESEARCH ARTICLE

Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries

Author information +
History +
PDF

Abstract

Since 2019, research into MXene derivatives has seen a dramatic rise; further progress requires a rational design for specific functionality. Herein, through a molecular design by selecting suitable functional groups in the MXene coating, we have implemented the dual N doping of the derivatives, nitrogen-doped TiO2@nitrogen-doped carbon nanosheets (N-TiO2@NC), to strike a balance between the active anatase TiO2 at low temperatures, and carbon activation at high temperatures. The NH3 reduction environment generated at 400 °C as evidenced by the in situ pyrolysis SVUV-PIMS process is crucial for concurrent phase engineering. With both electrical conductivity and surface Na+ availability, the N-TiO2@NC achieves higher interface capacitive-like sodium storage with long-term stability. More than 100 mAh g-1 is achieved at 2 A g-1 after 5000 cycles. The proposed design may be extended to other MXenes and solidify the growing family of MXene derivatives for energy storage.

Keywords

high-rate sodium-ion batteries / molecular design / MXene derivative / phase engineering

Cite this article

Download citation ▾
Hui Zhang, Xingwu Zhai, Xin Cao, Zhihao Liu, Xinfeng Tang, Zhihong Hu, Hang Wang, Zhandong Wang, Yang Xu, Wei He, Wei Zheng, Min Zhou, ZhengMing Sun. Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12692 DOI:10.1002/eem2.12692

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185.

[2]

P. K. Nayak, L. T. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102.

[3]

C. Feng, X. Huang, Acc. Chem. Res. 2018, 51, 2314.

[4]

M. G. Alexey, Energy Mater. 2023, 3, 300010.

[5]

H. Liang, L. Liu, N. Wang, W. Zhang, C.-T. Hung, X. Zhang, Z. Zhang, L. Duan, D. Chao, F. Wang, Y. Xia, W. Li, D. Zhao, Adv. Mater. 2022, 34, 2202873.

[6]

Z. Wang, W. Jin, X. Huang, G. Lu, Y. Li, Chem. Rec. 2020, 20, 1198.

[7]

M. Zhou, Y. Xu, Y. Lei, Nano Today 2018, 20, 33.

[8]

H. Wang, Q. Yang, N. Zheng, X. Zhai, T. Xu, Z. Sun, L. Wu, M. Zhou, Nano Res. 2023, 16, 4107.

[9]

Q. Li, H. Wang, X. Tang, M. Zhou, H. Zhao, Y. Xu, W. Xiao, Y. Lei, Adv. Funct. Mater. 2021, 31, 2101081.

[10]

Y. Mi, L. Wen, Z. Wang, D. Cao, R. Xu, Y. Fang, Y. Zhou, Y. Lei, Nano Energy 2016, 30, 109.

[11]

L. Wen, M. Zhou, C. Wang, Y. Mi, Y. Lei, Adv. Energy Mater. 2016, 6, 1600468.

[12]

L. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130.

[13]

Y. Zhao, L. P. Wang, M. T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, Adv. Energy Mater. 2017, 7, 1601424.

[14]

T. Susi, T. Pichler, P. Ayala, Beilstein J. Nanotechnol. 2015, 6, 177.

[15]

Y. M. Shul’ga, V. N. Troitskii, Powder Metall. Met. Ceram. 1979, 18, 681.

[16]

Z. Zhang, L. Yu, Y. Tu, R. Chen, L. Wu, J. Zhu, D. Deng, Cell Rep. Phys. Sci. 2020, 1, 100145.

[17]

F. De Angelis, C. Di Valentin, S. Fantacci, A. Vittadini, A. Selloni, Chem. Rev. 2014, 114, 9708.

[18]

J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Carbon 2015, 94, 189.

[19]

S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Angew. Chem. Int. Ed. 2018, 28, 1800499.

[20]

P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, P. Sun, B. K. Tay, Z. X. Shen, W. Mai, H. J. Fan, Adv. Sci. 2016, 3, 1500299.

[21]

D. A. H Hanaor, C. C. Sorrell, J. Mater. Sci. 2011, 46, 855.

[22]

F. Tian, Y. Zhang, J. Zhang, C. Pan, J. Phys. Chem. C 2012, 116, 7515.

[23]

O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, Phys. Chem. Chem. Phys. 2012, 14, 14567.

[24]

L. Pan, M. Ai, C. Huang, L. Yin, X. Liu, R. Zhang, S. Wang, Z. Jiang, X. Zhang, J.-J. Zou, W. Mi, Nat. Commun. 2020, 11, 418.

[25]

Y. Harada, M. Watanabe, R. Eguchi, Y. Ishiwata, M. Matsubara, A. Kotani, A. Yagishita, S. Shin, J. Electron Spectrosc. 2001, 114-116, 969.

[26]

J. Li, L. Liu, T.-K. Sham, Chem. Mater. 2015, 27, 3021.

[27]

D. Maganas, S. DeBeer, F. Neese, Inorg. Chem. 2014, 53, 6374.

[28]

W. Wang, M. Wu, P. Han, Y. Liu, L. He, Q. Huang, J. Wang, W. Yan, L. Fu, Y. Wu, ACS Appl. Mater. Interfaces 2019, 11, 3061.

[29]

D.-S. Bin, Z.-X. Chi, Y. Li, K. Zhang, X. Yang, Y.-G. Sun, J.-Y. Piao, A.-M. Cao, L.-J. Wan, J. Am. Chem. Soc. 2017, 139, 13492.

[30]

J. Zhao, R. Luque, W. Qi, J. Lai, W. Gao, M. R. H. S. Gilani, G. Xu, J. Mater. Chem. A 2015, 3, 519.

[31]

H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 1997, 101, 7717.

[32]

M. Sathiya, A. S. Prakash, K. Ramesha, J. M. Tarascon, A. K. Shukla, J. Am. Chem. Soc. 2011, 133, 16291.

[33]

K. Zhu, S. Wei, H. Shou, F. Shen, S. Chen, P. Zhang, C. Wang, Y. Cao, X. Guo, M. Luo, H. Zhang, B. Ye, X. Wu, L. He, L. Song, Nat. Commun. 2021, 12, 6878.

[34]

G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.

[35]

G. Kresse, J. Furthmüller, Physical Review B 1996, 54, 11169.

[36]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[37]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[38]

W. Tang, J. Xuan, H. Wang, S. Zhao, H. Liu, J. Power Sources 2018, 384, 249.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/