Mo Doping and Electrochemical Activation Co-Induced Vanadium Composite as High-Rate and Long-Life Anode for Ca-Ion Batteries

Hongchen Pan , Chunfang Wang , Minling Qiu , Yaxin Wang , Cuiping Han , Ding Nan

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12690

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12690 DOI: 10.1002/eem2.12690
RESEARCH ARTICLE

Mo Doping and Electrochemical Activation Co-Induced Vanadium Composite as High-Rate and Long-Life Anode for Ca-Ion Batteries

Author information +
History +
PDF

Abstract

Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca2+/Ca. However, current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca2+ (1.00 Å). Herein, an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries. The doping of Mo could destroy the lattice stability of VS4 material, enhancing the flexibility of the structure. The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite (defined as MoVSO), which serves as an active material for the storage of Ca2+ during cycling. Consequently, this amorphous vanadium structure exhibits excellent rate capability, achieving discharge capacities of 306.7 and 149.2 mAh g-1 at 5 and 50 A g-1 and an ultra-long cycle life of 2000 cycles with 91.2% capacity retention. These values represent the highest level to date reported for calcium ion batteries. The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO. This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.

Keywords

calcium-ion batteries / electrochemical activation / phase transformation / vanadium sulfide

Cite this article

Download citation ▾
Hongchen Pan, Chunfang Wang, Minling Qiu, Yaxin Wang, Cuiping Han, Ding Nan. Mo Doping and Electrochemical Activation Co-Induced Vanadium Composite as High-Rate and Long-Life Anode for Ca-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12690 DOI:10.1002/eem2.12690

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Zuo, F. Xiong, J. Wang, Y. An, L. Zhang, Q. An, Adv. Funct. Mater. 2022, 32, 2202975.

[2]

M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M. R. Palacin, Chem. Rev. 2016, 120, 6332.

[3]

J. Li, C. Han, X. Ou, Y. Tang, Angew. Chem. Int. Ed. 2022, 61, e202116668.

[4]

J. Wang, J. Wang, Y. Jiang, F. Xiong, S. Tan, F. Qiao, J. Chen, Q. An, L. Mai, Adv. Funct. Mater. 2022, 32, 2113030.

[5]

D. Chen, M. Lu, B. Wang, R. Chai, L. Li, D. Cai, H. Yang, B. Liu, Y. Zhang, W. Han, Energy Storage Mater. 2021, 35, 679.

[6]

B. Ji, H. He, W. Yao, Y. Tang, Adv. Mater. 2021, 33, 2005501.

[7]

R. J. Gummow, G. Vamvounis, M. B. Kannan, Y. He, Adv. Mater. 2018, 30, 1801702.

[8]

X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li, H. Liu, X. Guo, P. Jaumaux, X. Gao, Y. Fu, C. Wang, C. Wang, G. Wang, Nat. Commun. 2021, 12, 2857.

[9]

K. V. Nielson, T. L. Liu, Angew. Chem. Int. Ed. 2020, 59, 3368.

[10]

C. Chen, F. Shi, Z.-L. Xu, J. Mater. Chem. A 2021, 9, 11909.

[11]

S. Kim, L. Yin, M. H. Lee, P. Parajuli, L. Blanc, T. T. Fister, H. Park, B. J. Kwon, B. J. Ingram, P. Zapol, R. F. Klie, K. Kang, L. F. Nazar, S. H. Lapidus, J. T. Vaughey, ACS Energy Lett. 2020, 5, 3206.

[12]

H. Song, C. Wang, Adv. Energy Sustain. Res. 2022, 3, 2100192.

[13]

P. Wang, H. Wang, Z. Chen, J. Wu, J. Luo, Y. Huang, Nano Res. 2022, 15, 701.

[14]

B. J. Kwon, L. Yin, C. J. Bartel, K. Kumar, P. Parajuli, J. Gim, S. Kim, Y. A. Wu, R. F. Klie, S. H. Lapidus, B. Key, G. Ceder, J. Cabana, Chem. Mater. 2022, 34, 836.

[15]

Z. L. Xu, J. Park, J. Wang, H. Moon, G. Yoon, J. Lim, Y. J. Ko, S. P. Cho, S. Y. Lee, K. Kang, Nat. Commun. 2021, 12, 3369.

[16]

Z. Zhao-Karger, Y. Xiu, Z. Li, A. Reupert, T. Smok, M. Fichtner, Nat. Commun. 2022, 13, 3849.

[17]

S. Zhang, Y. Zhu, D. Wang, C. Li, Y. Han, Z. Shi, S. Feng, Adv. Sci. 2022, 9, 2200397.

[18]

H. Song, Y. Li, F. Tian, C. Wang, Adv. Funct. Mater. 2022, 32, 2200004.

[19]

C. Han, H. Li, Y. Li, J. Zhu, C. Zhi, Nat. Commun. 2021, 12, 2400.

[20]

Z. Hou, R. Zhou, Y. Yao, Z. Min, Z. Lu, Y. Zhu, J. M. Tarascon, B. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202214796.

[21]

Z. Hou, R. Zhou, Z. Min, Z. Lu, B. Zhang, ACS Energy Lett. 2023, 8, 274.

[22]

J. Park, Z. L. Xu, G. Yoon, S. K. Park, J. Wang, H. Hyun, H. Park, J. Lim, Y. J. Ko, Y. S. Yun, K. Kang, Adv. Mater. 2020, 32, 1904411.

[23]

X. Zhang, Z. Zhang, Z. Zhou, J. Energy Chem. 2018, 27, 83.

[24]

S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 2017, 4, 1700465.

[25]

R. Cang, C. Zhao, K. Ye, J. Yin, K. Zhu, J. Yan, G. Wang, D. Cao, ChemSusChem 2020, 13, 3911.

[26]

Z. Yao, V. I. Hegde, A. Aspuru-Guzik, C. Wolverton, Adv. Energy Mater. 2019, 9, 1802994.

[27]

M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. M. Cheng, Nat. Chem. 2018, 10, 667.

[28]

Y. Kim, Y. Park, M. Kim, J. Lee, K. J. Kim, J. W. Choi, Nat. Commun. 2022, 13, 2371.

[29]

X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu, Q. An, L. Mai, Adv. Funct. Mater. 2020, 30, 1904398.

[30]

X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang, X. Xu, H. Li, C. Zhi, C. Han, ACS Nano 2022, 16, 6093.

[31]

Y. Liu, L. Xu, X. Guo, T. Lv, H. Pang, J. Mater. Chem. A 2020, 8, 20784.

[32]

Z. Li, B. P. Vinayan, P. Jankowski, C. Njel, A. Roy, T. Vegge, J. Maibach, J. M. G. Lastra, M. Fichtner, Z. Zhao-Karger, Angew. Chem. Int. Ed. 2020, 132, 11580.

[33]

X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Kong, H. Lin, L. Wang, Z. Jin, Adv. Energy Mater. 2019, 9, 1900145.

[34]

J. Zhao, D. Xiao, Q. Wan, X. Wei, G. Tao, Y. Liu, Y. Xiang, K. Davey, Z. Liu, Z. Guo, Y. Song, Small 2023, 19, 2301738.

[35]

C. S. Rout, B. H. Kim, X. Xu, J. Yang, H. Y. Jeong, D. Odkhuu, N. Park, J. Cho, H. S. Shin, J. Am. Chem. Soc. 2013, 135, 8724.

[36]

J. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, J. Mater. Chem. C 2021, 9, 6312.

[37]

X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Kong, H. Lin, L. Wang, Z. Jin, J. Mater. Chem. A 2018, 6, 23761.

[38]

L. Yu, S. Zhao, Y. Yuan, G. Wei, J. Zhao, J. Mater. Chem. A 2021, 9, 1107.

[39]

Y. Wang, Z. Liu, C. Wang, X. Yi, R. Chen, L. Ma, Y. Hu, G. Zhu, T. Chen, Z. Tie, J. Ma, J. Liu, Z. Jin, Adv. Mater. 2018, 30, 1802563.

[40]

L. Cao, B. Luo, B. Xu, J. Zhang, C. Wang, Z. Xiao, S. Li, Y. Li, B. Zhang, G. Zou, H. Hou, X. Ou, X. Ji, Adv. Funct. Mater. 2021, 31, 2103802.

[41]

Z. Feng, G. Li, X. Wang, C. J. Gómez-García, J. Xin, H. Ma, H. Pang, K. Gao, Chem. Eng. J. 2022, 445, 136797.

[42]

S. Cheng, K. Yao, K. Zheng, Q. Li, D. Chen, Y. Jiang, W. Liu, Y. Feng, X. Rui, Y. Yu, Energy Environ. Mater. 2022, 5, 594.

[43]

J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li, Y. Li, Adv. Mater. 2017, 29, 1702061.

[44]

R. Zhou, Z. Hou, Q. Liu, X. Du, J. Huang, B. Zhang, Adv. Funct. Mater. 2022, 32, 2200929.

[45]

Y. Tang, X. Li, H. Lv, D. Xie, W. Wang, C. Zhi, H. Li, Adv. Energy Mater. 2020, 10, 2000892.

[46]

S. Gao, P. Ju, Z. Liu, L. Zhai, W. Liu, X. Zhang, Y. Zhou, C. Dong, F. Jiang, J. Sun, J. Energy Chem. 2022, 69, 356.

[47]

L. Xing, K. A. Owusu, X. Liu, J. Meng, K. Wang, Q. An, L. Mai, Nano Energy 2021, 79, 105384.

[48]

P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1601920.

[49]

D. Zhou, X. Tang, X. Zhang, F. Zhang, J. Wu, F. Kang, B. Li, G. Wang, Nano Lett. 2021, 21, 3551.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/