Construction of Phosphorus-Functionalized Multichannel Carbon Interlayers for Dendrite-Free Metallic Zn Anodes

Liang He , Qingyin Zhang , He Li , Shiping Liu , Ting Cheng , Ruoxuan Zhang , Yujia Wang , Peng Zhang , Zhiqiang Shi

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12689

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (5) : e12689 DOI: 10.1002/eem2.12689
RESEARCH ARTICLE

Construction of Phosphorus-Functionalized Multichannel Carbon Interlayers for Dendrite-Free Metallic Zn Anodes

Author information +
History +
PDF

Abstract

Zn metal anodes are usually subject to grave dendrite growth during platting/stripping, which dramatically curtails the lifespan of aqueous Zn-ion batteries and capacitors. To address above problems, in our work, a novel phosphorus-functionalized multichannel carbon interlayer was designed and covered on Zn anodes. The results demonstrated that the multichannel structure combined with the three-dimensional meshy skeleton can provide more sufficient space for Zn deposition, thereby effectively inhibiting the growth of zinc dendrites. Meanwhile, theoretical calculations also confirmed that the P–C and P=O functional groups from phosphorus-functionalized multichannel carbon interlayer have the decisive influence in reducing the zinc nucleation potential and depositing uniformly zinc. Concretely, the symmetrical battery assembled with phosphorus-functionalized multichannel carbon interlayer-covered Zn anodes possessed a long lifetime of 3300 h at 2 mA cm-2 with 1 mAh cm-2. Furthermore, the full cell with activated carbon cathodes exhibited a high specific capacity of 80.5 mAh g-1 and outstanding cycling stability without capacity decay after 15 000 cycles at a high current density of 5 A g-1. The superior electrochemical performance exceeded that of most reported papers. Consequently, our synthesized zincophilic interlayer with the unique structure has superior prospects for application in stabilizing zinc anodes and prolonging the lifespan of batteries.

Keywords

aqueous Zn-ion supercapacitors / multichannel carbon fiber / phosphorus functionalized / Zn dendrite / Zn metal anode

Cite this article

Download citation ▾
Liang He, Qingyin Zhang, He Li, Shiping Liu, Ting Cheng, Ruoxuan Zhang, Yujia Wang, Peng Zhang, Zhiqiang Shi. Construction of Phosphorus-Functionalized Multichannel Carbon Interlayers for Dendrite-Free Metallic Zn Anodes. Energy & Environmental Materials, 2024, 7(5): e12689 DOI:10.1002/eem2.12689

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Xu, S. Jin, N. Zhang, W. Deng, M. H. Seo, X. Wang, Nano Lett. 2022, 22, 1350.

[2]

L. He, Y. Liu, C. Li, D. Yang, W. Wang, W. Yan, W. Zhou, Z. Wu, L. Wang, Q. Huang, Y. Zhu, Y. Chen, L. Fu, X. Hou, Y. Wu, ACS Appl. Energy Mater. 2019, 2, 5835.

[3]

Y. Yang, T. Chen, B. Yu, M. Zhu, F. Meng, W. Shi, M. Zhang, Z. Qi, K. Zeng, J. Xue, Chem. Eng. J. 2022, 433, 134077.

[4]

Q. Ren, Z. Shi, L. Yan, F. Zhang, L. Fan, L. Zhang, W. Lv, J. Mater. Chem. A 2020, 8, 19898.

[5]

L. Yan, J. Wang, Q. Ren, L. Fan, B. Liu, L. Zhang, L. He, X. Mei, Z. Shi, Chem. Eng. J. 2021, 432, 133257.

[6]

P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye, W. Liu, J. Tang, J. Yang, Adv. Funct. Mater. 2021, 31, 2100398.

[7]

R. Zhu, H. Yang, W. Cui, L. Fadillah, T. Huang, Z. Xiong, C. Tang, D. Kowalski, S. Kitano, C. Zhu, D. R. King, T. Kurokawa, Y. Aoki, H. Habazaki, J. Mater. Chem. A 2022, 10, 3122.

[8]

Y. Mu, T. Zhou, D. Li, W. Liu, P. Jiang, L. Chen, H. Zhou, G. Ge, Chem. Eng. J. 2022, 430, 132839.

[9]

X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou, Y. Wang, A. Pan, Adv. Funct. Mater. 2021, 31, 2106114.

[10]

Y. Guo, W. Cai, Y. Lin, Y. Zhang, S. Luo, K. Huang, H. Wu, Y. Zhang, Energy Stor. Mater. 2022, 50, 580.

[11]

J. Yang, P. Yang, W. Yan, J. Zhao, H. J. Fan, Energy Stor. Mater. 2022, 51, 259.

[12]

F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543.

[13]

C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D. P. Leonard, I. A. Rodríguez-Pérez, J. Jiang, C. Fang, X. Ji, Chem. Commun. 2018, 54, 14097.

[14]

F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun. 2018, 9, 1656.

[15]

C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Adv. Mater. 2021, 33, 2100445.

[16]

W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu, H. Cheng, L. Mai, C. Hu, X. Wang, Nano Energy 2019, 62, 275.

[17]

P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. van Ree, Adv. Sci. 2021, 8, e2100309.

[18]

J. Jiang, Z. Pan, J. Yuan, J. Shan, C. Chen, S. Li, H. Xu, Y. Chen, Q. Zhuang, Z. Ju, H. Dou, X. Zhang, J. Wang, Chem. Eng. J. 2023, 452, 139335.

[19]

B. Lee, S. Cui, X. Xing, H. Liu, X. Yue, V. Petrova, H. Lim, R. Chen, P. Liu, ACS Appl. Mater. Interfaces 2018, 10, 38928.

[20]

D. Yuan, W. Manalastas Jr., L. Zhang, J. J. Chan, S. Meng, Y. Chen, M. Srinivasan, ChemSusChem 2019, 12, 4889.

[21]

C. Li, Z. Sun, T. Yang, L. Yu, N. Wei, Z. Tian, J. Cai, J. Lv, Y. Shao, M. H. Rümmeli, J. Sun, Z. Liu, Adv. Mater. 2020, 32, 2003425.

[22]

Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang, X. Ji, H. Wang, Small 2020, 16, 2000929.

[23]

P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao, T. Zhai, H. Li, Energy Environ. Sci. 2022, 15, 1638.

[24]

B. Li, K. Yang, J. Ma, P. Shi, L. Chen, C. Chen, X. Hong, X. Cheng, M. Tang, Y. He, F. Kang, Angew. Chem. Int. Ed. 2022, 61, e202212587.

[25]

H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 2100186.

[26]

X. Xie, S. Liang, J. Gao, S. Guo, J. Guo, C. Wang, G. Xu, X. Wu, G. Chen, J. Zhou, Energy Environ. Sci. 2020, 13, 503.

[27]

Y. Liang, Y. Wang, H. Mi, L. Sun, D. Ma, H. Li, C. He, P. Zhang, Chem. Eng. J. 2021, 425, 131862.

[28]

Z. Li, J. T. Zhang, Y. M. Chen, J. Li, X. W. Lou, Nat. Commun. 2015, 6, 8850.

[29]

X. Sun, W. Li, X. Zhong, Y. Yu, Energy Stor. Mater. 2017, 9, 112.

[30]

B. Yuan, X. Sun, L. Zeng, Y. Yu, Q. Wang, Small 2018, 14, 1703252.

[31]

B. Yuan, L. Zeng, X. Sun, Y. Yu, Q. Wang, Nano Res. 2018, 11, 2256.

[32]

Y. Li, Y. Yuan, Y. Bai, Y. Liu, Z. Wang, L. Li, F. Wu, K. Amine, C. Wu, J. Lu, Adv. Energy Mater. 2018, 8, 1702781.

[33]

T. Chen, Y. Liu, L. Pan, T. Lu, Y. Yao, Z. Sun, D. H. C. Chua, Q. Chen, J. Mater. Chem. A 2014, 2, 4117.

[34]

L. Qie, W. Chen, Z. Wang, Q. Shao, X. Li, L. Yuan, X. Hu, W. Zhang, Y. Huang, Adv. Mater. 2012, 24, 2047.

[35]

D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, Energy Environ. Sci. 2014, 7, 728.

[36]

Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan, D. Mitlin, Energy Environ. Sci. 2014, 7, 1708.

[37]

J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E. M. Lotfabad, B. C. Olsen, D. Mitlin, ACS Nano 2013, 7, 11004.

[38]

J. Ye, J. Zang, Z. Tian, M. Zheng, Q. Dong, J. Mater. Chem. A 2016, 4, 13223.

[39]

X. Gu, C. Tong, C. Lai, J. Qiu, X. Huang, W. Yang, B. Wen, L. Liu, Y. Hou, S. Zhang, J. Mater. Chem. A 2015, 3, 16670.

[40]

X. Zhao, Q. Zhang, B. Zhang, C.-M. Chen, A. Wang, T. Zhang, D. S. Su, J. Mater. Chem. 2012, 22, 4963.

[41]

M. Guo, J. Huang, X. Kong, H. Peng, H. Shui, F. Qian, L. Zhu, W. Zhu, Q. Zhang, New Carbon Mater. 2016, 31, 352.

[42]

Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang, B. Xu, Adv. Funct. Mater. 2023, 33, 2213416.

[43]

C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen, A. Pan, J. Ma, C. Wang, L. Zhu, L. Xie, X.-Y. Cao, J. Hu, G. Zou, H. Hou, X. Ji, ACS Energy Lett. 2021, 6, 675.

[44]

T. Wang, Q. Xi, Y. Li, H. Fu, Y. Hua, E. G. Shankar, A. K. Kakarla, J. S. Yu, Adv. Sci. 2022, 9, e2200155.

[45]

S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu, I. Usman, Z. Liu, M. Feng, G. Fang, X. Cao, S. Liang, A. Pan, Adv. Funct. Mater. 2021, 31, 2104361.

[46]

S. So, Y. N. Ahn, J. Ko, I. T. Kim, J. Hur, Energy Stor. Mater. 2022, 52, 40.

[47]

Y. Liu, T. Guo, Q. Liu, F. Xiong, M. Huang, Y. An, J. Wang, Q. An, C. Liu, L. Mai, Mater. Today Energy 2022, 28, 101056.

[48]

Y. Liu, J. Wang, J. Sun, F. Xiong, Q. Liu, Y. An, L. Shen, J. Wang, Q. An, L. Mai, J. Mater. Chem. A 2022, 10, 25029.

[49]

Y. Liu, Y. An, L. Wu, J. Sun, F. Xiong, H. Tang, S. Chen, Y. Guo, L. Zhang, Q. An, L. Mai, ACS Nano 2023, 17, 552.

[50]

C. Fan, W. Meng, D. Li, L. Jiang, Energy Stor. Mater. 2023, 56, 468.

[51]

C. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu, X. Lu, L. Fan, Y. Zhang, N. Zhang, Energy Stor. Mater. 2022, 53, 322.

[52]

S. Kim, X. Yang, M. Cho, Y. Lee, Chem. Eng. J. 2022, 427, 131954.

[53]

H. Yu, Q. Li, W. Liu, H. Wang, X. Ni, Q. Zhao, W. Wei, X. Ji, Y. Chen, L. Chen, J. Energy Chem. 2022, 73, 565.

[54]

L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang, X. Wang, C. Xu, C. Wang, F. Kang, G. Wang, Chem. Eng. J. 2020, 384, 123355.

[55]

R. O. Jones, O. Gunnarsson, Rev. Mod. Phys. 1989, 61, 689.

[56]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[57]

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.

[58]

J. D. Pack, H. J. Monkhorst, Phys. Rev. B 1977, 16, 1748.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/