In Situ-Constructed LixMoS2 with Highly Exposed Interface Boosting High-Loading and Long-Life Cathode for All-Solid-State Li–S Batteries

Hao Li , Rui Wang , Jiangping Song , Dan Liu , Hongyang Gao , Yimin Chao , Haolin Tang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12687

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12687 DOI: 10.1002/eem2.12687
RESEARCH ARTICLE

In Situ-Constructed LixMoS2 with Highly Exposed Interface Boosting High-Loading and Long-Life Cathode for All-Solid-State Li–S Batteries

Author information +
History +
PDF

Abstract

As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li–S batteries (ASSLSBs), numerous carbon additives and solid-state electrolytes (SSEs) have been incorporated into the cathode to facilitate ion/electron pathways around sulfur. However, this has resulted in a reduced capacity and decomposition of SSEs. Therefore, it is worth exploring neotype sulfur hosts with electronic/ionic conductivity in the cathode. Herein, we present a hybrid cathode composed of few-layered S/MoS2/C nanosheets (<5 layers) that exhibits high-loading and long-life performance without the need of additional carbon additives in advanced ASSLSBs. The multifunctional MoS2/C host exposes the abundant surface for intimate contacting sites, in situ-formed LixMoS2 during discharging as mixed ion/electron conductive network improves the S/Li2S conversion, and contributes extra capacity for the part of active materials. With a high active material content (S + MoS2/C) of 60 wt% in the S/MoS2/C/Li6PS5Cl cathode composite (the carbon content is only ∼3.97 wt%), the S/MoS2/C electrode delivers excellent electrochemical performance, with a high reversible discharge capacity of 980.3 mAh g-1 (588.2 mAh g-1 based on the whole cathode weight) after 100 cycles at 100 mA g-1. The stable cycling performance is observed over 3500 cycles with a Coulombic efficiency of 98.5% at 600 mA g-1, while a high areal capacity of 10.4 mAh cm-2 is achieved with active material loading of 12.8 mg cm-2.

Keywords

all-solid-state lithium–sulfur batteries / conversion/intercalation / high-loading and long-life / low carbon content / mixed ionic/electronic conductivities

Cite this article

Download citation ▾
Hao Li, Rui Wang, Jiangping Song, Dan Liu, Hongyang Gao, Yimin Chao, Haolin Tang. In Situ-Constructed LixMoS2 with Highly Exposed Interface Boosting High-Loading and Long-Life Cathode for All-Solid-State Li–S Batteries. Energy & Environmental Materials, 2024, 7(4): e12687 DOI:10.1002/eem2.12687

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Gao, H. Yang, Energy Environ. Sci. 2010, 3, 174.

[2]

R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.

[3]

W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K. P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374.

[4]

J. Zhi, S. Li, M. Han, Y. Lou, P. Chen, Adv. Energy Mater. 2018, 8, 1802254.

[5]

E. Umeshbabu, B. Zheng, Y. Yang, Electrochem. Energy Rev. 2019, 2, 199.

[6]

X. Yang, J. Luo, X. Sun, Chem. Soc. Rev. 2020, 49, 2140.

[7]

Z. Wang, Y. Li, H. Ji, J. Zhou, T. Qian, C. Yan, Adv. Mater. 2022, 34, 2203699.

[8]

R. Cao, Y. Chen, X. Ge, G. Yuan, T. Huang, Q. Xu, Z. Wang, Ionics 2021, 28, 201.

[9]

X. Wang, X. Hao, H. Zhang, X. Xia, J. Tu, Electrochim. Acta 2020, 329, 135108.

[10]

C. Ding, L. Huang, Y. Guo, J. Lan, Y. Yu, X. Fu, W. Zhong, X. Yang, Energy Storage Mater. 2020, 27, 25.

[11]

C. George, A. J. Morris, M. H. Modarres, M. D. Volder, Chem. Mater. 2016, 28, 7304.

[12]

J. P. Mwizerwa, Q. Zhang, F. Han, H. Wan, L. Cai, C. Wang, X. Yao, ACS Appl. Mater. Interfaces 2020, 12, 18519.

[13]

A. L. Santhosha, P. K. Nayak, K. Pollok, F. Langenhorst, P. Adelhelm, J. Phys. Chem. C 2019, 123, 12126.

[14]

S. Xu, C. Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov, L. F. Nazar, Adv. Funct. Mater. 2020, 31, 31.

[15]

Q. Zhang, X. Yao, J. P. Mwizerwa, N. Huang, H. Wan, Z. Huang, X. Xu, Solid State Ionics 2018, 318, 60.

[16]

X. Chen, G. Du, M. Zhang, A. Kalam, S. Ding, Q. Su, B. Xu, A. G Al-Sehemi, Energ. Technol. 2019, 8, 1901163.

[17]

L. Cai, Q. Zhang, J. P. Mwizerwa, H. Wan, X. Yang, X. Xu, X. Yao, ACS Appl. Mater. Interfaces 2018, 10, 10053.

[18]

P. Long, Q. Xu, G. Peng, X. Yao, X. Xu, ChemElectroChem 2016, 3, 764.

[19]

J. Kim, J. Park, S. Kang, S. Jung, D. Shin, M. Lee, J. Oh, K. Kim, J. Zausch, Y. Lee, Y. Lee, Energy Storage Mater. 2021, 41, 289.

[20]

Z. Yuan, L. Wang, D. Li, J. Cao, W. Han, ACS Nano 2021, 15, 7439.

[21]

J. Wu, Z. Lu, K. Li, J. Cui, S. Yao, M. I. Haq, B. Li, Q. Yang, F. Kang, F. Ciucci, J. Kim, J. Mater. Chem. A 2018, 6, 5668.

[22]

E. Brown, P. Yan, H. Tekik, A. Elangovan, J. Wang, D. Lin, J. Li, Mater. Des. 2019, 170, 107689.

[23]

A. Cheng, H. Zhang, W. Zhong, Z. Li, D. Cheng, Y. Lin, Y. Tang, H. Shao, Z. Li, Carbon 2020, 168, 107689.

[24]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111.

[25]

C. Tan, H. Zhang, Nat. Commun. 2015, 6, 7873.

[26]

Y. H. Lee, Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, T. W. Lin, Adv. Mater. 2012, 24, 2320.

[27]

H. Li, J. Wu, Z. Yin, H. Zhang, Acc. Chem. Res. 2014, 47, 1067.

[28]

L. David, R. Bhandavat, G. Singh, ACS Nano 2014, 8, 1759.

[29]

B. Chen, H. Lu, J. Zhou, C. Ye, C. Shi, N. Zhao, S. Z. Qiao, Adv. Energy Mater. 2018, 8, 1702909.

[30]

X. Xu, R. Zhao, W. Ai, B. Chen, H. Du, L. Wu, H. Zhang, W. Huang, T. Yu, Adv. Mater. 2018, 30, 1800685.

[31]

A. V. Murugan, M. Quintin, M. Delville, G. Campet, C. S. Gopinath, K. Vijayamohanan, J. Power Sources 2006, 156, 615.

[32]

X. Zhu, F. Xia, D. Liu, X. Xiang, J. Wu, J. Lei, J. Li, D. Qu, J. Liu, Adv. Funct. Mater. 2023, 33, 2207548.

[33]

A. P. S Gaur, S. Sahoo, M. Ahmadi, S. P. Dash, M. J. Guinel, R. S. Katiyar, Nano Lett. 2014, 14, 4314.

[34]

L. Chen, M. Shen, S. Ren, Y. Chen, W. Li, D. Han, Nanoscale 2021, 13, 9328.

[35]

A. S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T. S. Arthur, S. Liu, D. Wang, ACS Energy Lett. 2021, 6, 413.

[36]

Z. Shi, W. Kang, J. Xu, Y. Sun, M. Jiang, T. Ng, H. Xue, D. Y. Yu, W. Zhang, C. Lee, Nano Energy 2016, 22, 27.

[37]

Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, Z. Fan, Carbon 2014, 67, 119.

[38]

Z. Ali, T. Zhang, M. Asif, L. Zhao, Y. Yu, Y. Hou, Mater. Today 2020, 35, 131.

[39]

L. Jing, G. Lian, F. Niu, J. Yang, Q. Wang, D. Cui, C. Wong, X. Liu, Nano Energy 2018, 51, 546.

[40]

B. Zhao, Z. Ren, Z. Li, G. Tan, J. Xie, Acta Mater. 2023, 242, 242.

[41]

H. Wan, B. Zhang, S. Liu, J. Zhang, X. Yao, C. Wang, Nano Lett. 2021, 21, 8488.

[42]

H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, Y. Cui, Proc. Natl Acad. Sci. USA 2013, 110, 19701.

[43]

S. J. R Tan, I. Abdelwahab, Z. Ding, X. Zhao, T. Yang, G. Z. J. Loke, H. Lin, I. Verzhbitskiy, S. M. Poh, H. Xu, C. T. Nai, W. Zhou, G. Eda, B. Jia, K. P. Loh, J. Am. Chem. Soc. 2017, 139, 2504.

[44]

Q. Han, X. Li, X. Shi, H. Zhang, D. Song, F. Ding, L. Zhang, J. Mater. Chem. A 2019, 7, 3895.

[45]

R. Xu, J. Yue, S. Liu, J. Tu, F. Han, P. Liu, C. Wang, ACS Energy Lett. 2019, 4, 1073.

[46]

W. Ji, X. Zhang, D. Zheng, H. Huang, T. H. Lambert, D. Qu, Adv. Funct. Mater. 2022, 32, 2202919.

[47]

D. Cao, X. Sun, F. Li, S. Bak, T. Ji, M. Geiwitz, K. S. Burch, Y. Du, G. Yang, H. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202302363.

[48]

B. Chen, S. Deng, M. Jiang, M. Wu, J. Wu, X. Yao, Chem. Eng. J. 2022, 448, 448.

[49]

S. Ohno, C. Rosenbach, G. F. Dewald, J. Janek, W. G. Zeier, Adv. Funct. Mater. 2021, 31, 2010620.

[50]

G. Liu, J. Shi, M. Zhu, W. Weng, L. Shen, J. Yang, X. Yao, Energy Storage Mater. 2021, 38, 249.

[51]

H. Wan, L. Cai, F. Han, J. P. Mwizerwa, C. Wang, X. Yao, Small 2019, 15, e1905849.

[52]

H. Wan, L. Cai, Y. Yao, W. Weng, Y. Feng, J. P. Mwizerwa, G. Liu, Y. Yu, X. Yao, Small 2020, 16, e2001574.

[53]

H. Wan, G. Peng, X. Yao, J. Yang, P. Cui, X. Xu, Energy Storage Mater. 2016, 4, 59.

[54]

X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J. P. Mwizerwa, C. Wang, X. Xu, Adv. Energy Mater. 2017, 7, 7.

[55]

Q. Zhang, N. Huang, Z. Huang, L. Cai, J. Wu, X. Yao, J. Energy Chem. 2020, 40, 151.

[56]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[57]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[58]

G. Kresse, J. Hafner, Phys. Rev. B Condens. Matter 1993, 47, 558.

[59]

G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B Condens. Matter 1994, 49, 14251.

[60]

H. Li, J. Song, F. Wu, R. Wang, D. Liu, H. Tang, Nano Res. 2023, 16, 10956.

[61]

D. J. Chadi, Phys. Rev. B 1977, 16, 1746.

[62]

G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/