Stoichiometric Ti3C2Tx Coating for Inhibiting Dendrite Growth in Anode-Free Lithium Metal Batteries

Xiangrong Zeng , Manmatha Mahato , Woong Oh , Hyunjoon Yoo , Van Hiep Nguyen , Saewoong Oh , Geetha Valurouthu , Soon-Ki Jeong , Chi Won Ahn , Yury Gogotsi , Il-Kwon Oh

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12686

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12686 DOI: 10.1002/eem2.12686
RESEARCH ARTICLE

Stoichiometric Ti3C2Tx Coating for Inhibiting Dendrite Growth in Anode-Free Lithium Metal Batteries

Author information +
History +
PDF

Abstract

Lithium metal batteries (LMBs) and anode-free LMBs (AFLMBs) present a solution to the need for batteries with a significantly superior theoretical energy density. However, their adoption is hindered by low Coulombic efficiency (CE) and rapid capacity fading, primarily due to the formation of unstable solid electrolyte interphase (SEI) layer and Li dendrite growth as a result of uneven Li plating. Here, we report on the use of a stoichiometric Ti3C2Tx (S-Ti3C2Tx) MXene coating on the copper current collector to enhance the cyclic stability of an anode-free lithium metal battery. The S-Ti3C2Tx coating provides abundant nucleation sites, thereby lowering the overpotential for Li nucleation, and promoting uniform Li plating. Additionally, the fluorine (-F) termination of S-Ti3C2Tx participates in the SEI formation, producing a LiF-rich SEI layer, vital for stabilizing the SEI and improving cycle life. Batteries equipped with S-Ti3C2Tx@Cu current collectors displayed reduced Li consumption during stable SEI formation, resulting in a significant decrease in capacity loss. AFLMBs with S-Ti3C2Tx@Cu current collectors achieved a high initial capacity density of 4.2 mAh cm-2, 70.9% capacity retention after 50 cycles, and an average CE of 98.19% in 100 cycles. This innovative application of MXenes in the energy field offers a promising strategy to enhance the performance of AFLMBs and could potentially accelerate their commercial adoption.

Keywords

anode-free lithium metal batteries / stoichiometric MXene / solid electrolyte interphase / surface terminations

Cite this article

Download citation ▾
Xiangrong Zeng, Manmatha Mahato, Woong Oh, Hyunjoon Yoo, Van Hiep Nguyen, Saewoong Oh, Geetha Valurouthu, Soon-Ki Jeong, Chi Won Ahn, Yury Gogotsi, Il-Kwon Oh. Stoichiometric Ti3C2Tx Coating for Inhibiting Dendrite Growth in Anode-Free Lithium Metal Batteries. Energy & Environmental Materials, 2024, 7(4): e12686 DOI:10.1002/eem2.12686

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[2]

J. Neumann, M. Petranikova, M. Meeus, J. D. Gamarra, R. Younesi, M. Winter, S. Nowak, Adv. Energy Mater. 2022, 12, 212917.

[3]

J.-M. Tarascon, M. Armand, Nature 2001, 414, 359.

[4]

S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 2005, 4, 366.

[5]

J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.

[6]

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energ. Environ. Sci. 2014, 7, 513.

[7]

S. Jiao, J. Zheng, Q. Li, X. Li, M. H. Engelhard, R. Cao, J.-G. Zhang, W. Xu, Joule 2018, 2, 110.

[8]

G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L.-Q. Chen, D. Wang, Nat. Energy 2018, 3, 1076.

[9]

L. Zhao, B. Ding, X.-Y. Qin, Z. Wang, W. Lv, Y.-B. He, Q.-H. Yang, F. Kang, Adv. Mater. 2022, 34, 2106704.

[10]

J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Adv. Funct. Mater. 2016, 26, 7094.

[11]

R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy 2019, 4, 683.

[12]

A. J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R. T. White, J. Lee, T. Rodgers, R. Petibon, Nat. Energy 2020, 5, 693.

[13]

D. Aurbach, E. Zinigrad, H. Teller, P. Dan, J. Electrochem. Soc. 2000, 147, 1274.

[14]

E. Peled, J. Electrochem. Soc. 1979, 126, 2047.

[15]

P. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332.

[16]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[17]

J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng, K. Xu, Energ. Environ. Sci. 2019, 12, 780.

[18]

O. Tamwattana, H. Park, J. Kim, I. Hwang, G. Yoon, T. Hwang, Y. Kang, J. Park, N. Meethong, K. Kang, ACS Energy Lett. 2021, 6, 4416.

[19]

A. A. Assegie, J. Cheng, L. Kuo, W. Su, B. Hwang, Nanoscale 2018, 10, 6125.

[20]

K. Yan, Z. Lu, H. Lee, F. Xiong, P. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.

[21]

H. Liu, X. Yue, X. Xing, Q. Yan, J. Huang, V. Petrova, H. Zhou, P. Liu, Energy Storage Mater. 2019, 16, 505.

[22]

H. Umh, J. Park, J. Yeo, S. Jung, I. Nam, J. Yi, Electrochem. Commun. 2019, 99, 27.

[23]

J. H. Lee, Y. Cho, D. Gu, S. J. Kim, ACS Appl. Mater. Interfaces 2022, 14, 15080.

[24]

T. Kang, J. Zhao, F. Guo, L. Zheng, Y. Mao, C. Wang, Y. Zhao, J. Zhu, Y. Qiu, Y. Shen, L. Chen, ACS Appl. Mater. Interfaces 2020, 12, 8168.

[25]

S. U. Chae, S. Yi, J. Yoon, J. C. Hyun, S. Doo, S. Lee, J. Lee, S. J. Kim, Y. S. Yun, J. H. Lee, C. M. Koo, Energy Storage Mater. 2022, 52, 76.

[26]

D. Zhang, S. Wang, B. Li, Y. Gong, S. Yang, Adv. Mater. 2019, 31, 1901820.

[27]

D. Yang, C. Zhao, R. Lian, L. Yang, Y. Wang, Y. Gao, X. Xiao, Y. Gogotsi, X. Wang, G. Chen, Y. Wei, Adv. Funct. Mater. 2021, 31, 2010987.

[28]

S. Ha, D. Kim, H. K. Lim, C. M. Koo, S. J. Kim, Y. S. Yun, Adv. Funct. Mater. 2021, 31, 2101261.

[29]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[30]

A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.

[31]

B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.

[32]

I. J. Echols, J. Yun, H. Cao, R. M. Thakur, A. Sarmah, Z. Tan, R. Littleton, M. Radovic, M. J. Green, J. L. Lutkenhaus, Chem. Mater. 2022, 34, 4884.

[33]

F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137.

[34]

Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, A. Vojvodic, ACS Energy Lett. 2016, 1, 589.

[35]

S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi, ACS Nano 2018, 12, 986.

[36]

V. H. Nguyen, R. Tabassian, S. Oh, S. Nam, M. Mahato, P. Thangasamy, A. Rajabi-Abhari, W. Hwang, A. K. Taseer, I. Oh, Adv. Funct. Mater. 2020, 30, 1909504.

[37]

K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 2018, 30, 1804779.

[38]

T. S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee, A. C. Foucher, K. Hantanasirisakul, C. E. Shuck, E. A. Stach, Y. Gogotsi, ACS Nano 2021, 15, 6420.

[39]

P. P. Michałowski, M. Anayee, T. S. Mathis, S. Kozdra, A. Wójcik, K. Hantanasirisakul, I. Jóźwik, A. Piątkowska, M. Możdżonek, A. Malinowska, R. Diduszko, E. Wierzbicka, Y. Gogotsi, Nat. Nanotechnol. 2022, 17, 1192.

[40]

J. Tan, J. Matz, P. Dong, J. Shen, M. Ye, Adv. Energy Mater. 2021, 11, 2100046.

[41]

A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, NPJ Comput. Mater. 2018, 4, 15.

[42]

X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem 2018, 4, 174.

[43]

E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, ACS Energy Lett. 2017, 2, 1321.

[44]

X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.

[45]

X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S. C. Liou, K. Amine, Nat. Nanotechnol. 2018, 13, 715.

[46]

Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, Nat. Energy 2020, 5, 526.

[47]

X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, Nat. Energy 2019, 4, 796.

[48]

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.

[49]

R. Cheng, T. Hu, H. Zhang, C. Wang, M. Hu, J. Yang, C. Cui, T. Guang, C. Li, C. Shi, P. Hou, J. Phys. Chem. C 2018, 123, 1099.

[50]

J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, M. W. Barsoum, Appl. Surf. Sci. 2016, 362, 406.

[51]

L. Å. Näslund, P. O. Persson, J. Rosén, J. Phys. Chem. C 2020, 124, 27732.

[52]

N. A. Sahalie, A. A. Assegie, W. Su, Z. T. Wondimkun, B. A. Jote, B. Thirumalraj, C. Huang, Y. Yang, B. Hwang, J. Power Sources 2019, 437, 226912.

[53]

X. Q. Zhang, X. Chen, L. P. Hou, B. Q. Li, X. B. Cheng, J. Q. Huang, Q. Zhang, ACS Energy Lett. 2019, 4, 411.

[54]

A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.

[55]

S. Eijima, H. Sonoki, M. Matsumoto, S. Taminato, D. Mori, N. Imanishi, J. Electrochem. Soc. 2019, 166, A5421.

[56]

H. Jin, H. Liu, H. Cheng, P. Zhang, M. Wang, J. Electroanal. Chem. 2020, 874, 114484.

[57]

A. Ramasubramanian, V. Yurkiv, T. Foroozan, M. Ragone, R. Shahbazian-Yassar, F. Mashayek, J. Phys. Chem. C 2019, 123, 10237.

[58]

S. Xiong, K. Xie, Y. Diao, X. Hong, J. Power Sources 2014, 246, 840.

[59]

B. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2018, 8, 1702097.

[60]

W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang, C. Yang, Electrochem. Energy Rev. 2021, 4, 601.

[61]

Q. Li, H. Pan, W. Li, Y. Wang, J. Wang, J. Zheng, X. Yu, H. Li, L. Chen, ACS Energy Lett. 2018, 3, 2259.

[62]

S. Cho, D. Y. Kim, J. Lee, J. Kang, H. Lee, G. Kim, D. H. Seo, S. Park, Adv. Funct. Mater. 2022, 32, 2208629.

[63]

T. T. Hagos, B. Thirumalraj, C. J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S. F. Chiu, W. N. Su, B. J. Hwang, ACS Appl. Mater. Interfaces 2019, 11, 9955.

[64]

L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 1156.

[65]

F. Qiu, X. Li, H. Deng, D. Wang, X. Mu, P. He, H. Zhou, Adv. Energy Mater. 2019, 9, 1803372.

[66]

T. T. Beyene, H. K. Bezabh, M. A. Weret, T. M. Hagos, C. J. Huang, C. H. Wang, W. N. Su, H. Dai, B. J. Hwang, J. Electrochem. Soc. 2019, 166, A1501.

[67]

S. S. Zhang, X. Fan, C. Wang, Electrochim. Acta 2017, 258, 1201.

[68]

W. Shin, A. Manthiram, ACS Appl. Mater. Interfaces 2022, 14, 17454.

RIGHTS & PERMISSIONS

2024 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/