Self-Powered Piezo-Supercapacitors Based on ZnO@Mo-Fe-MnO2 Nanoarrays

Luo Sun , Zhiguo Ye , Xinyuan Peng , Shaojie Zhuang , Duosheng Li , Zhong Jin

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12685

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12685 DOI: 10.1002/eem2.12685
RESEARCH ARTICLE

Self-Powered Piezo-Supercapacitors Based on ZnO@Mo-Fe-MnO2 Nanoarrays

Author information +
History +
PDF

Abstract

The development of self-charging supercapacitor power cells (SCSPCs) has profound implications for smart electronic devices used in different fields. Here, we epitaxially electrodeposited Mo- and Fe-codoped MnO2 films on piezoelectric ZnO nanoarrays (NAs) grown on the flexible carbon cloth (denoted ZnO@Mo-Fe-MnO2 NAs). A self-charging supercapacitor power cell device was assembled with the Mo- and Fe-codoped MnO2 nanoarray electrode and poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-Trfe) piezoelectric film doped with BaTiO3 (BTO) and carbon nanotubes (CNTs) (denoted PVDF-Trfe/CNTs/BTO). The self-charging supercapacitor power cell device exhibited an energy density of 30 µWh cm-2 with a high power density of 40 mW cm-2 and delivered an excellent self-charging performance of 363 mV (10 N) driven by both the piezoelectric ZnO nanoarrays and the poly(vinylidenefluoride-co-trifluoroethylene) piezoelectric film doped with BaTiO3 and carbon nanotubes. More intriguingly, the device could also be self-charged by 184 mV due to residual stress alone and showed excellent energy conversion efficiency and low self-discharge rate. This work illustrates for the first time the self-charging mechanism involving electrolyte ion migration driven by both electrodes and films. A comprehensive analysis strongly confirmed the important contribution of the piezoelectric ZnO nanoarrays in the self-charging process of the self-charging supercapacitor power cell device. This work provides novel directions and insights for the development of self-charging supercapacitor power cells.

Keywords

MnO 2 / piezoelectric / self-charging / supercapacitors / ZnO nanoarray

Cite this article

Download citation ▾
Luo Sun, Zhiguo Ye, Xinyuan Peng, Shaojie Zhuang, Duosheng Li, Zhong Jin. Self-Powered Piezo-Supercapacitors Based on ZnO@Mo-Fe-MnO2 Nanoarrays. Energy & Environmental Materials, 2024, 7(4): e12685 DOI:10.1002/eem2.12685

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. S. Wu, A. C. Wang, W. B. Ding, H. Y. Guo, Z. L. Wang, Adv. Energy Mater. 2019, 9, 25.

[2]

H. J. Kil, J. W. Park, Nano Energy 2023, 114, 14.

[3]

K. Krishnamoorthy, P. Pazhamalai, S. Manoharan, N. U. L. Ali, S. J. Kim, Carbon Energy 2022, 4, 833.

[4]

L. Manjakkal, C. G. Nunez, W. T. Dang, R. Dahiya, Nano Energy 2018, 51, 604.

[5]

W. Yuan, C. G. Zhang, B. F. Zhang, X. L. Wei, O. U. Yang, Y. B. Liu, L. X. He, S. N. Cui, J. Wang, Z. L. Wang, Adv. Mater. Technol. 2022, 7, 8.

[6]

J. Q. Zheng, Y. M. Wang, G. Liu, Z. H. Yu, S. Sun, Y. Fu, D. Chen, W. H. Cai, J. Q. Cui, G. S. Wang, H. M. Zhou, J. Power Sources 2022, 528, 7.

[7]

A. Ramadoss, B. Saravanakumar, S. W. Lee, Y. S. Kim, S. J. Kim, Z. L. Wang, ACS Nano 2015, 9, 4337.

[8]

H. X. He, Y. M. Fu, T. M. Zhao, X. C. Gao, L. L. Xing, Y. Zhang, X. Y. Xue, Nano Energy 2017, 39, 590.

[9]

K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. S. Nardekar, S. Sahoo, S. J. Kim, Nat. Commun. 2020, 11, 11.

[10]

N. Chodankar, C. Padwal, H. D. Pham, K. Ostrikov, S. Jadhav, K. Mahale, P. Yarlagadda, Y. S. Huh, Y. K. Han, D. Dubal, Nano Energy 2021, 90, 12.

[11]

A. A. Kulkarni, N. K. Gaikwad, A. P. Salunkhe, R. M. Dahotre, T. S. Bhat, P. S. Patil, J. Energy Storage 2023, 65, 18.

[12]

Y. Lu, Y. Jiang, Z. Lou, R. L. Shi, D. Chen, G. Z. Shen, Prog. Nat. Sci. 2020, 30, 174.

[13]

A. De Adhikari, S. Singh, I. Lahiri, J. Alloys Compd. 2023, 939, 11.

[14]

S. Verma, S. Arya, V. Gupta, A. Khosla, Chem. Eng. J. 2021, 424, 16.

[15]

H. Y. Wang, Q. Q. Zhou, B. W. Yao, H. Y. Ma, M. Zhang, C. Li, G. Q. Shi, Adv. Mater. Interfaces 2018, 5, 7.

[16]

D. Zhou, F. Y. Wang, X. D. Zhao, J. Q. Yang, H. R. Lu, L. Y. Lin, L. Z. Fan, ACS Appl. Mater. Interfaces 2020, 12, 44883.

[17]

I. Rabani, Y. J. Park, J. W. Lee, M. S. Tahir, A. Kumar, Y. S. Seo, J. Mater. Chem. A 2022, 10, 15580.

[18]

B. Padha, S. Verma, S. Arya, Adv. Mater. Technol. 2022, 7, 13.

[19]

S. B. Liu, A. L. Li, C. G. Yang, F. P. Ouyang, J. F. Zhou, X. L. Liu, Appl. Surf. Sci. 2022, 571, 11.

[20]

X. Y. Zhang, Q. G. Fu, H. M. Huang, L. Wei, X. Guo, Small 2019, 15, 13.

[21]

Q. Hu, X. L. Jiang, M. He, Q. J. Zheng, K. H. Lam, D. M. Lin, Electrochim. Acta 2020, 338, 10.

[22]

K. Q. Wu, Z. G. Ye, Y. Ding, Z. X. Zhu, X. Y. Peng, D. S. Li, G. Ma, J. Power Sources 2020, 477, 10.

[23]

Y. Jin, H. Y. Chen, M. H. Chen, N. Liu, Q. W. Li, ACS Appl. Mater. Interfaces 2013, 5, 3408.

[24]

Y. P. Tian, C. H. Yang, W. X. Que, X. B. Liu, X. T. Yin, L. B. Kong, J. Power Sources 2017, 359, 332.

[25]

M. H. Zhao, Z. L. Wang, S. X. Mao, Nano Lett. 2004, 4, 587.

[26]

Y. Qin, X. D. Wang, Z. L. Wang, Nature 2008, 451, 809.

[27]

Z. L. Wang, J. H. Song, Science 2006, 312, 242.

[28]

V. Cauda, S. Stassi, A. Lamberti, M. Morello, C. F. Pirri, G. Canavese, Nano Energy 2015, 18, 212.

[29]

X. Zheng, K. Zhang, Y. H. Sun, S. J. Jin, Y. Li, H. Yu, H. Y. Qin, Y. Y. Ding, J. Alloys Compd. 2021, 851, 5.

[30]

C. Y. Zhao, X. D. Sun, W. S. Li, M. W. Shi, K. L. Ren, X. M. Lu, ACS Appl. Energy. Mater. 2021, 4, 8070.

[31]

Y. Mallaiah, V. R. Jeedi, R. Swarnalatha, A. Raju, S. N. Reddy, A. S. Chary, J. Phys. Chem. Solids 2021, 155, 8.

[32]

A. V. Solnyshkin, I. L. Kislova, I. M. Morsakov, A. N. Belov, V. I. Shevyakov, D. A. Kiselev, V. V. Shvartsman, J. Adv. Dielectr. 2017, 7, 1720003.

[33]

B. Singh, B. Padha, S. Verma, S. Satapathi, V. Gupta, S. Arya, J. Energy Storage 2022, 47, 24.

[34]

S. J. Zhuang, X. Y. Peng, F. Pei, L. Sun, Z. G. Ye, J. T. Huang, D. S. Li, Z. Jin, Sci. China Mater. 2023, 66, 2207.

[35]

X. Li, Z. Zhu, G. Ma, Y. Ding, J. Wang, Z. Ye, X. Peng, D. Li, J. Electron. Mater. 2022, 51, 2982.

[36]

K. Q. Wu, X. Q. Li, Z. X. Zhu, G. Ma, Y. Ding, J. L. Wang, Z. G. Ye, X. Y. Peng, D. S. Li, Z. Jin, J. Mater. Sci. Mater. Electron. 2022, 33, 13326.

[37]

Y. Niu, H. Su, X. Li, J. Li, Y. Qi, J. Alloys Compd. 2022, 898, 162863.

[38]

D. Zhou, F. Y. Wang, J. Q. Yang, L. Z. Fan, Chem. Eng. J. 2021, 406, 9.

[39]

W. J. Lee, K. H. Kim, Y. J. Choi, Z. X. Wan, S. H. Kwon, Energ. Technol. 2023, 11, 2201120.

[40]

Q. Ma, M. Yang, X. H. Xia, H. Chen, L. Yang, H. B. Liu, Electrochim. Acta 2018, 291, 9.

[41]

T. Zhai, S. L. Xie, M. H. Yu, P. P. Fang, C. L. Liang, X. H. Lu, Y. X. Tong, Nano Energy 2014, 8, 255.

[42]

M. Lu, Y. Cao, Y. Xue, W. Qiu, ACS Omega 2021, 6, 27994.

[43]

M. Li, A. Addad, M. Dolci, P. Roussel, M. Naushad, S. Szunerits, R. Boukherroub, Chem. Eng. J. 2020, 396, 9.

[44]

L. M. Qin, G. Y. Yang, D. Li, K. T. Ou, H. Y. Zheng, Q. Fu, Y. Y. Sun, Chem. Eng. J. 2022, 430, 10.

[45]

X. Ji, H. W. Luo, W. J. Dong, L. X. Yang, J. J. Guo, S. Cheng, Electrochim. Acta 2023, 449, 8.

[46]

A. Baral, N. Bose, B. Show, N. R. Bandyopadhyay, N. Mukherjee, Mater. Today Chem. 2023, 31, 14.

[47]

N. Jabeen, A. Hussain, Q. Y. Xia, S. Sun, J. W. Zhu, H. Xia, Adv. Mater. 2017, 29, 9.

[48]

Y. Zhao, S. C. Wang, M. Yuan, Y. Chen, Y. P. Huang, J. B. A. Lian, S. L. Yang, H. M. Li, L. M. Wu, Chem. Eng. J. 2021, 417, 9.

[49]

S. Hussain, I. Rabani, D. Vikraman, A. Feroze, M. Ali, Y. S. Seo, W. S. Song, K. S. An, H. S. Kim, S. H. Chun, J. Jung, Chem. Eng. J. 2021, 421, 15.

[50]

Q. T. Nguyen, U. T. Nakate, J. Chen, D. T. Tran, S. Park, Compos. Part B 2023, 252, 110528.

[51]

Y. Duan, Z. Y. Yu, S. J. Hu, X. S. Zheng, C. T. Zhang, H. H. Ding, B. C. Hu, Q. Q. Fu, Z. L. Yu, X. Zheng, J. F. Zhu, M. R. Gao, S. H. Yu, Angew. Chem. Int. Ed. 2019, 58, 15772.

[52]

R. Zhang, J. W. Yan, L. Wang, W. Z. Shen, J. L. Zhang, M. Zhong, S. W. Guo, J. Power Sources 2021, 513, 9.

[53]

M. N. Sakib, S. Ahmed, S. Rahat, S. B. Shuchi, J. Energy Storage 2021, 44, 31.

[54]

Y. F. Huang, T. Gu, G. C. Rui, P. R. Shi, W. B. Fu, L. Chen, X. T. Liu, J. P. Zeng, B. H. Kang, Z. C. Yan, F. J. Stadler, L. Zhu, F. Y. Kang, Y. B. He, Energy Environ. Sci. 2021, 14, 6021.

[55]

Y. H. Ye, Y. F. Zhang, Y. Chen, X. S. Han, F. Jiang, Adv. Funct. Mater. 2020, 30, 12.

[56]

S. Manoharan, P. Pazhamalai, V. K. Mariappan, K. Murugesan, S. Subramanian, K. Krishnamoorthy, S. J. Kim, Nano Energy 2021, 83, 11.

[57]

K. Krishnamoorthy, S. Manoharan, V. K. Mariappan, P. Pazhamalai, S. J. Kim, J. Mater. Chem. A 2022, 10, 7818.

[58]

P. Pazhamalai, K. Krishnamoorthy, V. K. Mariappan, S. Sahoo, S. Manoharan, S. J. Kim, Adv. Mater. Interfaces 2018, 5, 9.

[59]

K. Shrestha, S. Sharma, G. B. Pradhan, T. Bhatta, S. S. Rana, S. H. Y. Lee, S. Seonu, Y. Shin, J. Y. Park, Nano Energy 2022, 102, 12.

[60]

P. Pazhamalai, K. Krishnamoorthy, S. Manoharan, V. K. Mariappan, S. J. Kim, Sustain. Mater. Technol. 2022, 33, 11.

[61]

H. H. Singh, S. Singh, N. Khare, Polym. Adv. Technol. 2018, 29, 143.

[62]

S. Mondal, S. Thakur, S. Maiti, S. Bhattacharjee, K. K. Chattopadhyay, ACS Appl. Mater. Interfaces 2023, 15, 8446.

[63]

S. Bairagi, S. W. Ali, Soft Matter 2020, 16, 4876.

[64]

K. Y. Fang, F. Fang, S. W. Wang, W. Yang, W. Sun, J. F. Li, J. Phys. D Appl. Phys. 2018, 51, 8.

[65]

Y. M. You, W. Q. Liao, D. W. Zhao, H. Y. Ye, Y. Zhang, Q. H. Zhou, X. H. Niu, J. L. Wang, P. F. Li, D. W. Fu, Z. M. Wang, S. Gao, K. L. Yang, J. M. Liu, J. Y. Li, Y. F. Yan, R. G. Xiong, Science 2017, 357, 306.

[66]

Z. X. Wang, W. Q. Liao, Science 2022, 375, 1353.

[67]

D. Zhou, N. Wang, T. T. Yang, L. Wang, X. Cao, Z. L. Wang, Mater. Horizons 2020, 7, 2158.

[68]

X. Y. Gao, Y. Z. Zhang, Y. F. Zhao, S. K. Yin, J. Z. Gui, C. L. Sun, S. S. Guo, Nano Energy 2022, 91, 14.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/