Fe3O4/Fe/FeS Tri-Heterojunction Node Spawning N-Carbon Nanotube Scaffold Structure for High-Performance Sodium-Ion Battery

Yuan Liu , Qing Lin , Xiaocui Chen , Xufeng Meng , Baoxiu Hou , Haiyan Liu , Shuaihua Zhang , Ningzhao Shang , Zheng Wang , Chaoyue Zhang , Jianjun Song , Xiaoxian Zhao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12684

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12684 DOI: 10.1002/eem2.12684
RESEARCH ARTICLE

Fe3O4/Fe/FeS Tri-Heterojunction Node Spawning N-Carbon Nanotube Scaffold Structure for High-Performance Sodium-Ion Battery

Author information +
History +
PDF

Abstract

The Fe-based anode of sodium-ion batteries attracts much attention due to the abundant source, low-cost, and high specific capacity. However, the low electron and ion transfer rate, poor structural stability, and shuttle effect of NaS2 intermediate restrain its further development. Herein, the Fe3O4/Fe/FeS tri-heterojunction node spawned N-carbon nanotube scaffold structure (FHNCS) was designed using the modified MIL-88B(Fe) as a template followed by catalytic growth and sulfidation process. During catalytic growth process, the reduced Fe monomers catalyze the growth of N-doped carbon nanotubes to connect the Fe3O4/Fe/FeS tri-heterojunction node, forming a 3D scaffold structure. Wherein the N-doped carbon promotes the transfer of electrons between Fe3O4/Fe/FeS particles, and the tri-heterojunction facilitates the diffusion of electrons at the interface, to organize a 3D conductive network. The unique scaffold structure provides more active sites and shortens the Na+ diffusion path. Meanwhile, the structure exhibits excellent mechanical stability to alleviate the volume expansion during circulation. Furthermore, the Fe in Fe3O4/Fe heterojunction can adjust the d-band center of Fe in Fe3O4 to enhance the adsorption between Fe3O4 and Na2S intermediate, which restrains the shuttle effect. Therefore, the FHNCS demonstrates a high specific capacity of 436 mAh g-1 at 0.5 A g-1, 84.7% and 73.4% of the initial capacities are maintained after 100 cycles at 0.5 A g-1 and 1000 cycles at 1.0 A g-1. We believe that this strategy gives an inspiration for constructing Fe-based anode with excellent rate capability and cycling stability.

Keywords

anode / core-shell / heterojunction / hollow structure / sodium ion batteries

Cite this article

Download citation ▾
Yuan Liu, Qing Lin, Xiaocui Chen, Xufeng Meng, Baoxiu Hou, Haiyan Liu, Shuaihua Zhang, Ningzhao Shang, Zheng Wang, Chaoyue Zhang, Jianjun Song, Xiaoxian Zhao. Fe3O4/Fe/FeS Tri-Heterojunction Node Spawning N-Carbon Nanotube Scaffold Structure for High-Performance Sodium-Ion Battery. Energy & Environmental Materials, 2024, 7(4): e12684 DOI:10.1002/eem2.12684

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Liu, L. Ma, S. Li, L. Hou, X. Qi, Y. Wen, G. Hu, N. Wang, Y. Zhao, X. Zhao, Rare Metals 2023, 42, 3378.

[2]

C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen, R. Tao, S. Ma, Y. Peng, Y. Lu, Adv. Mater. 2019, 31, 1808338.

[3]

F. Gu, J. Guo, X. Yao, P. A. Summers, S. D. Widijatmoko, P. Hall, J. Clean. Prod. 2017, 161, 765.

[4]

S. Panchal, M. Mathew, R. Fraser, M. Fowler, Appl. Therm. Eng. 2018, 135, 123.

[5]

J. Li, J. Fleetwood, W. B. Hawley, W. Kays, Chem. Rev. 2021, 122, 903.

[6]

T. Wang, D. Su, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Electro. Ener. Rev. 2018, 1, 200.

[7]

X. Xie, T. Makaryan, M. Zhao, K. Van Aken, Y. Gogotsi, G. Wang, Adv. Energy Mater. 2016, 6, 1502161.

[8]

J. Chen, G. Adit, L. Li, Y. Zhang, D. Chua, P. S. Lee, Energy Environ. Mater. 2023, 6, e12633.

[9]

L. Zhang, X. Li, M. Yang, W. Chen, Energy Storage Mater. 2021, 41, 522.

[10]

Y. Tian, P. Hu, T. Zhu, Z. Liu, G. Hu, C. Cai, Z. Jian, L. Zhou, L. Mai, Energy Environ. Mater. 2021, 4, 428.

[11]

P. K. Nayak, L. Yang, W. Brehm, P. P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102.

[12]

J. Ma, X. Guo, Y. Yan, H. Xue, H. Pang, Adv. Sci. 2018, 5, 1700986.

[13]

Z. Lu, Y. Zhai, N. Wang, Y. Zhang, P. Xue, M. Guo, B. Tang, D. Huang, W. Wang, Z. Bai, S. Dou, Chem. Eng. J. 2020, 380, 122455.

[14]

B. Hou, Y. Wang, J. Guo, Q. Ning, X. Xi, W. Pang, A. Cao, J. Zhang, X. Wu, Nanoscale 2018, 10, 9218.

[15]

S. Li, W. He, B. Liu, J. Cui, X. Wang, D. Peng, B. Liu, B. Qu, Energy Storage Mater. 2020, 25, 636.

[16]

T. Wen, B. Qu, S. Tan, G. Huang, J. Song, Z. Wang, J. Wang, A. Tang, F. Pan, Energy Storage Mater. 2023, 55, 816.

[17]

B. Hou, Y. Wang, J. Guo, Y. Zhang, Q. Ning, Y. Yang, W. Li, J. Zhang, X. Wu, ACS Appl. Mater. Interfaces 2018, 10, 3581.

[18]

Z. Sun, W. Shi, J. Chen, Z. Gu, S. Lai, S. Gan, J. Xie, Q. Li, D. Qu, X. Wu, X. Cui, D. Han, L. Niu, Electrochim. Acta 2022, 431, 141084.

[19]

Y. Zhuang, J. Zhao, Y. Zhao, X. Zhu, H. Xia, Mater. Tech. 2021, 28, e00258.

[20]

J. Xu, X. Zhang, Y. Miao, M. Wen, W. Yan, P. Lu, Z. Wang, Q. Sun, Appl. Surf. Sci. 2021, 546, 149163.

[21]

P. Li, Y. Shen, X. Li, W. Huang, X. Lu, Energy Environ. Mater. 2022, 5, 608.

[22]

X. Luo, H. Zheng, W. Lai, P. Yuan, S. Li, D. Li, Y. Chen, Energy Environ. Mater. 2023, 6, e12402.

[23]

B. Wang, Y. Xia, G. Wang, Y. Zhou, H. Wang, Chem. Eng. J. 2017, 309, 417.

[24]

X. Tao, Y. Li, H. Wang, X. Lv, Y. Li, D. Xu, Y. Jiang, Y. Meng, J. Colloid Inter. Sci. 2020, 565, 494.

[25]

Y. Fang, J. Zhang, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, CCS Chem. 2021, 3, 2428.

[26]

Y. Zhao, F. Wang, C. Wang, S. Wang, C. Wang, Z. Zhao, L. Duan, Y. Liu, Y. Wu, W. Li, D. Zhao, Nano Energy 2019, 56, 426.

[27]

M. Yu, L. Sun, X. Ning, J. Alloys Comp. 2021, 878, 160359.

[28]

S. Rubio, R. R. Maa, G. F. Ortiz, C. P. Vicente, P. Lavela, V. Etacheri, J. L. Tirado, ACS Appl. Energ. Mater. 2020, 3, 10765.

[29]

W. Zhang, C. Lan, X. Xie, Q. Cao, M. Zheng, H. Dong, H. Hu, Y. Xiao, Y. Liu, Y. Liang, J. Colloid Interface Sci. 2019, 546, 53.

[30]

L. Ma, B. Hou, N. Shang, S. Zhang, C. Wang, L. Zong, J. Song, J. Wang, X. Zhao, Mater. Chem. Front. 2021, 5, 4579.

[31]

S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J. Chen, Q. Yan, ACS Nano 2021, 15, 13307.

[32]

X. Ou, L. Cao, X. Liang, F. Zheng, H. Zheng, X. Yang, J. Wang, C. Yang, M. Liu, ACS Nano 2019, 13, 3666.

[33]

J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo, Z. Liu, D. Zhang, J. Liu, M. Zhu, Adv. Energy Mater. 2021, 11, 2100673.

[34]

D. Chen, Q. Huang, J. Ding, T. Li, D. Yu, G. Nie, J. Qian, Z. Yang, J. Colloid Interface Sci. 2022, 623, 1210.

[35]

S. Ni, X. Wang, G. Zhou, F. Yang, J. Wang, Q. Wang, D. He, Mater. Lett. 2009, 63, 2701.

[36]

M. I. Duinea, A. Costas, M. Baibarac, P. Chiriţă, J. Colloid Interface Sci. 2016, 467, 51.

[37]

D. Ni, W. Sun, Z. Wang, Y. Bai, H. Lei, X. Lai, K. Sun, Adv. Energy Mater. 2019, 9, 1900036.

[38]

X. Chen, J. Tian, P. Li, Y. Fang, X. Liang, J. Feng, J. Dong, X. Ai, H. Yang, Y. Cao, Adv. Energy Mater. 2022, 12, 2200886.

[39]

Z. Li, X. Wu, X. Jiang, B. Shen, Z. Teng, D. Sun, G. Fu, Y. Tang, Adv. Powder Mater. 2022, 1, 100020.

[40]

M. S. Kim, E. H. Lim, S. B. Kim, C. S. Jo, J. Chun, J. Lee, Adv. Funct. Mater. 2017, 27, 1603921.

[41]

G. Wang, M. Shao, H. Ding, Y. Qi, J. Lian, H. Li, F. Huo, Angew. Chem. Int. Ed. 2019, 58, 13584.

[42]

Y. Xi, T. Xie, Y. Liu, Y. Wu, H. Liu, Z. Su, Y. Huang, X. Yuan, C. Zhang, X. Li, J. Hazard. Mater. 2022, 425, 127837.

[43]

Y. Lu, J. Claydon, E. Ahmad, Y. Xu, S. Thompson, K. Wilson, G. Van der laan, IEEE Trans. Magn. 2005, 41, 2809.

[44]

X. Ye, X. Li, X. Chu, Z. Wang, S. Zuo, T. Wang, C. Yao, J. Alloy Compd. 2021, 871, 159542.

[45]

D. Boudouh, D. Hamana, H. S. C. Metselaar, S. Achour, L. Chetibi, A. R. Akhiani, Mater. Sci. Engine B 2021, 271, 115276.

[46]

Z. Man, P. Li, D. Zhou, Y. Wang, X. Liang, R. Zang, P. Li, Y. Zuo, M. Y. Lam, G. Wang, Nano Lett. 2020, 20, 3769.

[47]

X. Liu, Y. Du, X. Xu, X. Zhou, Z. Dai, J. Bao, J. Phys. Chem. C 2016, 120, 3214.

[48]

H. Liu, M. Jia, Q. Zhu, B. Cao, R. Chen, Y. Wang, F. Wu, B. Xu, ACS Appl. Mater. Interfaces 2016, 8, 26878.

[49]

X. Yan, H. Ge, Y. Fang, Q. Liu, J. Gu, Energy Technol. 2022, 10, 2200207.

[50]

J. Yang, Y. Zhang, Y. Zhang, J. Shao, H. Geng, Y. Zhang, M. Ulaganathan, Z. Dai, B. Li, Y. Zong, X. Dong, Q. Yan, W. Huang, Small 2017, 13, 1702181.

[51]

L. Ma, X. Zhou, J. Sun, P. Zhang, B. Hou, S. Zhang, N. Shang, J. Song, H. Ye, H. Shao, Y. Tang, X. Zhao, J. Energy Chem. 2023, 82, 268.

[52]

H. Wang, Y. Zhou, S. Tao, Ppl. Catal. B Environ. 2022, 315, 121588.

[53]

Q. Lin, S. Zhang, L. Yu, B. Hou, S. Zhang, Z. Wang, J. Song, X. Zhao, Chem. Eng. J. 2023, 455, 140945.

[54]

H. Zhang, Y. Wang, S. L. Guo, Y. Hui, H. Wei, J. Song, X. Zhao, Batter. Supercaps 2023, 6, e202200482.

[55]

B. Hou, L. Ma, X. Zang, N. Shang, J. Song, X. Zhao, C. Wang, J. Qi, J. Wang, R. Yu, Chem. Res. Chinese U. 2021, 37, 265.

[56]

X. Qi, Y. Liu, L. Ma, B. Hou, H. Zhang, X. Li, Rare Metals 2022, 41, 1637.

[57]

G. Kresse, J. Furthmüllerz, Comput. Mater. Sci. 1996, 6, 15.

[58]

G. Kresse, J. Furthmüller, Phy. Rev. B 1996, 54, 11169.

[59]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[60]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[61]

P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[62]

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[63]

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/