Toluene Processed All-Polymer Solar Cells with 18% Efficiency and Enhanced Stability Enabled by Solid Additive: Comparison Between Sequential-Processing and Blend-Casting

Guoping Zhang , Chaoyue Zhao , Liangxiang Zhu , Lihong Wang , Wenzhao Xiong , Huawei Hu , Qing Bai , Yaping Wang , Chen Xie , Peng You , He Yan , Dan Wu , Tao Yang , Mingxia Qiu , Shunpu Li , Guangye Zhang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12683

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12683 DOI: 10.1002/eem2.12683
RESEARCH ARTICLE

Toluene Processed All-Polymer Solar Cells with 18% Efficiency and Enhanced Stability Enabled by Solid Additive: Comparison Between Sequential-Processing and Blend-Casting

Author information +
History +
PDF

Abstract

The emergence of polymerized small molecule acceptors (PSMAs) has significantly improved the performance of all-polymer solar cells (all-PSCs). However, the pace of device engineering lacks behind that of materials development, so that a majority of the PSMAs have not fulfilled their potentials. Furthermore, most high-performance all-PSCs rely on the use of chloroform as the processing solvent. For instance, the recent high-performance PSMA, named PJ1-γ, with high LUMO, and HOMO levels, could only achieve a PCE of 16.1% with a high-energy-level donor (JD40) using chloroform. Herein, we present a methodology combining sequential processing (SqP) with the addition of 0.5%wt PC71BM as a solid additive (SA) to achieve an impressive efficiency of 18.0% for all-PSCs processed from toluene, an aromatic hydrocarbon solvent. Compared to the conventional blend-casting (BC) method whose best efficiency (16.7%) could only be achieved using chloroform, the SqP method significantly boosted the device efficiency using toluene as the processing solvent. In addition, the donor we employ is the classic PM6 that has deeper energy levels than JD40, which provides low energy loss for the device. We compare the results with another PSMA (PYF-T-o) with the same method. Finally, an improved photostability of the SqP devices with the incorporation of SA is demonstrated.

Keywords

all-polymers solar cells / sequential processing / solid additive

Cite this article

Download citation ▾
Guoping Zhang, Chaoyue Zhao, Liangxiang Zhu, Lihong Wang, Wenzhao Xiong, Huawei Hu, Qing Bai, Yaping Wang, Chen Xie, Peng You, He Yan, Dan Wu, Tao Yang, Mingxia Qiu, Shunpu Li, Guangye Zhang. Toluene Processed All-Polymer Solar Cells with 18% Efficiency and Enhanced Stability Enabled by Solid Additive: Comparison Between Sequential-Processing and Blend-Casting. Energy & Environmental Materials, 2024, 7(4): e12683 DOI:10.1002/eem2.12683

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. K. Zhou, K. H. Xian, Q. C. Qi, M. Y. Gao, Z. X. Peng, J. W. Liu, Y. Liu, S. M. Li, Y. D. Zhang, Y. H. Geng, L. Ye, Adv. Funct. Mater. 2022, 32, 14.

[2]

Y. Zhang, B. Q. Wu, Y. K. He, W. Y. Deng, J. W. Li, J. Y. Li, N. Qiao, Y. F. Xing, X. Y. Yuan, N. Li, C. J. Brabec, H. B. Wu, G. H. Lu, C. H. Duan, F. Huang, Y. Cao, Nano Energy 2022, 93, 11.

[3]

G. Zeng, W. J. Chen, X. B. Chen, Y. Hu, Y. Chen, B. Zhang, H. Y. Chen, W. W. Sun, Y. X. Shen, Y. W. Li, F. Yan, Y. F. Li, J. Am. Chem. Soc. 2022, 144, 8658.

[4]

Y. C. Liang, D. F. Zhang, Z. R. Wu, T. Jia, L. Luer, H. R. Tang, L. Hong, J. B. Zhang, K. Zhang, C. J. Brabec, N. Li, F. Huang, Nat. Energy 2022, 7, 1180.

[5]

Z. G. Zhang, Y. F. Li, Angew. Chem. Int. Ed. 2021, 60, 4422.

[6]

R. Sun, W. Wang, H. Yu, Z. Chen, X. X. Xia, H. Shen, J. Guo, M. M. Shi, Y. N. Zheng, Y. Wu, W. Y. Yang, T. Wang, Q. Wu, Y. Yang, X. H. Lu, J. L. Xia, C. J. Brabec, H. Yan, Y. F. Li, J. Min, Joule 2021, 5, 1548.

[7]

B. Kan, F. Ershad, Z. Y. Rao, C. J. Yu, Nano Res. 2021, 14, 2891.

[8]

Y. Song, K. Zhang, S. Dong, R. X. Xia, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2020, 12, 18473.

[9]

Y. W. Han, S. J. Jeon, H. S. Lee, H. Park, K. S. Kim, H.-W. Lee, D. K. Moon, Adv. Energy Mater. 2019, 9, 1902065.

[10]

R. Sun, T. Wang, Q. Fan, M. Wu, X. Yang, X. Wu, Y. Yu, X. Xia, F. Cui, J. Wan, X. Lu, X. Hao, A. K. Y. Jen, E. Spiecker, J. Min, Joule 2023, 7, 221.

[11]

R. Ma, Q. Fan, T. A. Dela Peña, B. Wu, H. Liu, Q. Wu, Q. Wei, J. Wu, X. Lu, M. Li, W. Ma, G. Li, Adv. Mater. 2023, 35, 2212275.

[12]

Y. Cai, C. Xie, Q. Li, C. Liu, J. Gao, M. H. Jee, J. Qiao, Y. Li, J. Song, X. Hao, H. Y. Woo, Z. Tang, Y. Zhou, C. Zhang, H. Huang, Y. Sun, Adv. Mater. 2023, 35, 2208165.

[13]

J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou, Adv. Mater. 2022, 34, 2205009.

[14]

Y. Li, Q. Li, Y. H. Cai, H. Jin, J. Q. Zhang, Z. Tang, C. F. Zhang, Z. X. Wei, Y. M. Sun, Energy Environ. Sci. 2022, 15, 3854.

[15]

C. Zhang, Z. W. Ge, J. W. Xue, W. Ma, Y. M. Sun, Macromol. Chem. Phys. 2023, 224, 7.

[16]

B. Q. Wu, Y. L. Li, S. Z. Tian, Y. Zhang, L. H. Pan, K. Z. Liu, M. Q. Yang, F. Huang, Y. Cao, C. H. Duan, Chin. J. Chem. 2023, 41, 790.

[17]

P. Wang, Y. H. Zhu, H. X. Tao, Y. L. Ma, D. D. Cai, Q. S. Tu, R. C. Liao, Q. D. Zheng, Chin. J. Polym. Sci. 2023, 41, 1018.

[18]

C. Wang, C. Guan, T. Wu, X. Q. Liu, J. Fang, F. Liu, C. Y. Xiao, W. W. Li, ACS Appl. Mater. Interfaces 2023, 15, 13363.

[19]

Z. Q. Zhang, D. Deng, Y. Li, J. W. Ding, Q. Wu, L. L. Zhang, G. J. Zhang, M. J. Iqbal, R. Wang, J. Q. Zhang, X. H. Qiu, Z. X. Wei, Adv. Energy Mater. 2022, 12, 10.

[20]

Z. Y. Li, F. Peng, H. L. Quan, X. T. Qian, L. Ying, Y. Cao, Chem. Eng. J. 2022, 430, 9.

[21]

Y. X. Kong, Y. X. Li, J. Y. Yuan, L. M. Ding, Infomat 2022, 4, 8.

[22]

T. Jia, J. B. Zhang, H. R. Tang, J. C. Jia, K. Zhang, W. Y. Deng, S. Dong, F. Huang, Chem. Eng. J. 2022, 433, 8.

[23]

K. Hu, J. Q. Du, C. Zhu, W. B. Lai, J. Li, J. M. Xin, W. Ma, Z. J. Zhang, J. Y. Zhang, L. Meng, Y. F. Li, Sci. Chin. Chem. 2022, 65, 954.

[24]

J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, Nat. Rev. Chem. 2022, 6, 614.

[25]

J. Wang, X. Zhan, Acc. Chem. Res. 2021, 54, 132.

[26]

C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.

[27]

Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.

[28]

W. Zou, C. Han, X. Zhang, J. Qiao, J. Yu, H. Xu, H. Gao, Y. Sun, Y. Kan, X. Hao, G. Lu, Y. Yang, K. Gao, Adv. Energy Mater. 2023, 13, 2300784.

[29]

R. Ma, K. Zhou, Y. Sun, T. Liu, Y. Kan, Y. Xiao, T. A. Dela Peña, Y. Li, X. Zou, Z. Xing, Z. Luo, K. S. Wong, X. Lu, L. Ye, H. Yan, K. Gao, Matter 2022, 5, 725.

[30]

J. C. Jia, Q. R. Huang, T. Jia, K. Zhang, J. Zhang, J. S. Miao, F. Huang, C. L. Yang, Adv. Energy Mater. 2022, 12, 9.

[31]

Q. Ma, Z. R. Jia, L. Meng, H. Yang, J. Y. Zhang, W. B. Lai, J. Guo, X. Jiang, C. H. Cui, Y. F. Li, Adv. Funct. Mater. 2023, 33, 8.

[32]

L. Zhang, T. Jia, L. Pan, B. Wu, Z. Wang, K. Gao, F. Liu, C. Duan, F. Huang, Y. Cao, Sci. Chin. Chem. 2021, 64, 408.

[33]

H. Sun, B. Liu, Y. Ma, J.-W. Lee, J. Yang, J. Wang, Y. Li, B. Li, K. Feng, Y. Shi, B. Zhang, D. Han, H. Meng, L. Niu, B. J. Kim, Q. Zheng, X. Guo, Adv. Mater. 2021, 33, 2102635.

[34]

T. Jia, J. Zhang, W. Zhong, Y. Liang, K. Zhang, S. Dong, L. Ying, F. Liu, X. Wang, F. Huang, Y. Cao, Nano Energy 2020, 72, 104718.

[35]

K. Feng, Z. Wu, M. Su, S. Ma, Y. Shi, K. Yang, Y. Wang, Y. Zhang, W. Sun, X. Cheng, L. Huang, J. Min, H. Y. Woo, X. Guo, Adv. Funct. Mater. 2021, 31, 2008494.

[36]

C. Duan, Z. Li, S. Pang, Y.-L. Zhu, B. Lin, F. J. M. Colberts, P. J. Leenaers, E. Wang, Z.-Y. Sun, W. Ma, S. C. J. Meskers, R. A. J. Janssen, Solar RRL 2018, 2, 1800247.

[37]

C. Shang, S. Zhang, D. Han, X. Ding, Y. Zhang, C. Yang, J. Ding, X. Bao, ACS Appl. Mater. Interfaces 2023, 15, 5538.

[38]

G. P. Zhang, L. H. Wang, C. Y. Zhao, Y. J. Wang, R. Y. Hu, J. X. Che, S. Y. He, W. Chen, L. F. Cao, Z. H. Luo, M. X. Qiu, S. P. Li, G. Y. Zhang, Polymers 2022, 14, 11.

[39]

Y. Yue, B. Zheng, J. Ni, W. Yang, L. Huo, J. Wang, L. Jiang, Adv. Sci. 2022, 9, 2204030.

[40]

B. Li, X. Zhang, Z. Wu, J. Yang, B. Liu, Q. Liao, J. Wang, K. Feng, R. Chen, H. Y. Woo, F. Ye, L. Niu, X. Guo, H. Sun, Sci. Chin. Chem. 2022, 65, 1157.

[41]

K. An, F. Peng, W. Zhong, W. Deng, D. Zhang, L. Ying, H. Wu, F. Huang, Y. Cao, Sci. Chin. Chem. 2010, 2021, 64.

[42]

Y. Sun, L. Nian, Y. Kan, Y. Ren, Z. Chen, L. Zhu, M. Zhang, H. Yin, H. Xu, J. Li, X. Hao, F. Liu, K. Gao, Y. Li, Joule 2022, 6, 2835.

[43]

J. Y. Zhang, L. F. Zhang, X. K. Wang, Z. J. Xie, L. Hu, H. D. Mao, G. D. Xu, L. C. Tan, Y. W. Chen, Adv. Energy Mater. 2022, 12, 8.

[44]

J. X. Li, X. C. Meng, Z. Q. Huang, R. Y. Dai, W. P. Sheng, C. X. Gong, L. C. Tan, Y. W. Chen, Adv. Funct. Mater. 2022, 32, 10.

[45]

D. Chen, S. Q. Liu, B. Huang, J. Oh, F. Y. Wu, J. B. Liu, C. Yang, L. Chen, Y. W. Chen, Small 2022, 18, 9.

[46]

Z. Xing, X. C. Meng, R. Sun, T. Hu, Z. Q. Huang, J. Min, X. T. Hu, Y. W. Chen, Adv. Funct. Mater. 2020, 30, 7.

[47]

S. Q. Liu, D. Chen, X. T. Hu, Z. Xing, J. Wan, L. Zhang, L. C. Tan, W. H. Zhou, Y. W. Chen, Adv. Funct. Mater. 2020, 30, 8.

[48]

Z. Q. Huang, X. T. Hu, Z. Xing, X. C. Meng, X. P. Duan, J. Long, T. Hu, L. C. Tan, Y. W. Chen, J. Phys. Chem. C 2020, 124, 8129.

[49]

X. C. Meng, L. Zhang, Y. P. Xie, X. T. Hu, Z. Xing, Z. Q. Huang, C. Liu, L. C. Tan, W. H. Zhou, Y. M. Sun, W. Ma, Y. W. Chen, Adv. Mater. 2019, 31, 10.

[50]

X. C. Meng, X. T. Hu, X. Yang, J. P. Yin, Q. X. Wang, L. Q. Huang, Z. K. N. Yu, T. Hu, L. C. Tan, W. H. Zhou, Y. W. Chen, ACS Appl. Mater. Interfaces 2018, 10, 8917.

[51]

X. T. Hu, X. C. Meng, J. Xiong, Z. Q. Huang, X. Yang, L. C. Tan, Y. W. Chen, Adv. Mater. Technol. 2017, 2, 8.

[52]

C. Zhao, J. Yi, L. Wang, G. Lu, H. Huang, H. K. Kim, H. Yu, C. Xie, P. You, G. Lu, M. Qiu, H. Yan, S. Li, G. Zhang, Nano Energy 2022, 104, 107872.

[53]

N. Al-Shekaili, S. Hashim, F. F. Muhammadsharif, M. Z Al-Abri, K. Sulaiman, M. Y. Yahya, M. Ridzuan Ahmed, Mater. Today Proc. 2021, 42, 1921.

[54]

C. Zhao, R. Ma, Y. Hou, L. Zhu, X. Zou, W. Xiong, H. Hu, L. Wang, H. Yu, Y. Wang, G. Zhang, J. Yi, L. Chen, D. Wu, T. Yang, G. Li, M. Qiu, H. Yan, S. Li, G. Zhang, Adv. Energy Mater. 2023, 13, 2300904.

[55]

Y. Zhang, D. Deng, Z. Wang, Y. Wang, J. Zhang, J. Fang, Y. Yang, G. Lu, W. Ma, Z. Wei, Adv. Energy Mater. 2017, 7, 1701548.

[56]

L. Bu, S. Gao, W. Wang, L. Zhou, S. Feng, X. Chen, D. Yu, S. Li, G. Lu, Adv. Electr. Mater. 2016, 2, 1600359.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

239

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/