Binding SnO2 Nanoparticles with MoS2 Nanosheets Toward Highly Reversible and Cycle-Stable Lithium/Sodium Storage

Deliang Cheng , Wenbiao Zhang , Yi Tang , Qingsheng Gao , Renzong Hu , Lichun Yang , Min Zhu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12682

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12682 DOI: 10.1002/eem2.12682
RESEARCH ARTICLE

Binding SnO2 Nanoparticles with MoS2 Nanosheets Toward Highly Reversible and Cycle-Stable Lithium/Sodium Storage

Author information +
History +
PDF

Abstract

SnO2, with its high theoretical capacity, abundant resources, and environmental friendliness, is widely regarded as a potential anode material for lithium-ion batteries (LIBs). Nevertheless, the coarsening of the Sn nanoparticles impedes the reconversion back to SnO2, resulting in low coulombic efficiency and rapid capacity decay. In this study, we fabricated a heterostructure by combining SnO2 nanoparticles with MoS2 nanosheets via plasma-assisted milling. The heterostructure consists of in-situ exfoliated MoS2 nanosheets predominantly in 1 T phase, which tightly encase the SnO2 nanoparticles through strong bonding. This configuration effectively mitigates the volume change and particle aggregation upon cycling. Moreover, the strong affinity of Mo, which is the lithiation product of MoS2, toward Sn plays a pivotal role in inhibiting the coarsening of Sn nanograins, thus enhancing the reversibility of Sn to SnO2 upon cycling. Consequently, the SnO2/MoS2 heterostructure exhibits superb performance as an anode material for LIBs, demonstrating high capacity, rapid rate capability, and extended lifespan. Specifically, discharged/charged at a rate of 0.2 A g-1 for 300 cycles, it achieves a remarkable reversible capacity of 1173.4 mAh g-1. Even cycled at high rates of 1.0 and 5.0 A g-1 for 800 cycles, it still retains high reversible capacities of 1005.3 and 768.8 mAh g-1, respectively. Moreover, the heterostructure exhibits outstanding electrochemical performance in both full LIBs and sodium-ion batteries.

Keywords

1 T-MoS 2 / heterostructure / lithium-ion batteries / Sn coarsening / SnO 2

Cite this article

Download citation ▾
Deliang Cheng, Wenbiao Zhang, Yi Tang, Qingsheng Gao, Renzong Hu, Lichun Yang, Min Zhu. Binding SnO2 Nanoparticles with MoS2 Nanosheets Toward Highly Reversible and Cycle-Stable Lithium/Sodium Storage. Energy & Environmental Materials, 2024, 7(4): e12682 DOI:10.1002/eem2.12682

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 7179.

[2]

H. Chang, Y. R. Wu, X. Han, T. F. Yi, Energy Materials 2021,

[3]

X. Q. Zeng, M. Li, D. Abd El-Hady, W. Alshitari, A. S Al-Bogami, J. Lu, K. Amine, Adv. Energy Mater. 2019, 9, 25.

[4]

Y. Cao, X. Meng, A. Li, Energy Environ. Mater. 2021, 4, 3.

[5]

L. Zhang, H. B. Wu, B. Liu, X. W. Lou, Energ. Environ. Sci. 2014, 7, 3.

[6]

X. S. Zhou, L. Yu, X. W. Lou, Adv. Energy Mater. 2016, 6, 14.

[7]

L. Zhang, K. N. Zhao, C. L. Sun, R. H. Yu, Z. C. Zhuang, J. T. Li, W. N. Xu, C. M. Wang, W. W. Xu, L. Q. Mai, Energy Storage Mater. 2020, 25, 376.

[8]

Y. Zhao, L. P. Wang, M. T. Sougrati, Z. X. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. C. Xu, Adv. Energy Mater. 2017, 7, 9.

[9]

T. F. Liu, Y. P. Zhang, Z. G. Jiang, X. Q. Zeng, J. P. Ji, Z. H. Li, X. H. Gao, M. H. Sun, Z. Lin, M. Ling, J. C. Zheng, C. D. Liang, Energ. Environ. Sci. 2019, 12, 5.

[10]

H. G. Wang, Q. Wu, Y. H. Wang, X. Wang, L. L. Wu, S. Y. Song, H. J. Zhang, Adv. Energy Mater. 2019, 9, 3.

[11]

J. Sang, K. Liu, X. Zhang, S. Zhang, G. Cao, Y. Shen, G. Shao, Energy Environ. Mater. 2023, 6, 3.

[12]

G. J. Li, S. G. Guo, B. Xiang, S. X. Mei, Y. Zheng, X. M. Zhang, B. Gao, K. C. Paul, K. F. Huo, Energy Mater. 2022, 2, 3.

[13]

M. Liu, H. Fan, O. Zhuo, J. C. Chen, Q. Wu, L. J. Yang, L. M. Peng, X. Z. Wang, R. C. Che, Z. Hu, Nano Energy 2020, 68, 7.

[14]

G. Wen, L. Tan, X. X. Lan, H. Y. Zhang, R. Z. Hu, B. Yuan, J. Liu, M. Zhu, Sci. China Mater. 2021, 64, 11.

[15]

D. T. Ma, Y. L. Li, H. W. Mi, S. Luo, P. X. Zhang, Z. Q. Lin, J. Q. Li, H. Zhang, Angew. Chem. Int. Ed. 2018, 57, 29.

[16]

X. S. Zhou, L. Yu, X. W. Lou, Nanoscale 2016, 8, 15.

[17]

D. W. Su, H. J. Ahn, G. X. Wang, Chem. Commun. 2013, 49, 30.

[18]

X. S. Zhou, L. J. Wan, Y. G. Guo, Adv. Mater. 2013, 25, 15.

[19]

R. Z. Li, J. J. Xu, Z. R. Lv, W. J. Dong, F. Q. Huang, Sci. China Mater. 2022, 65, 3.

[20]

R. Z. Hu, Y. P. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. H. Yang, L. C. Yang, M. Zhu, Adv. Mater. 2017, 29, 13.

[21]

X. Lan, X. Xiong, J. Liu, B. Yuan, R. Hu, M. Zhu, Small 2022, 18, 26.

[22]

Y. H. Ding, B. Liu, J. J. Zou, H. Q. Liu, T. Xin, L. H. Xia, Y. Q. Wang, Mater. Res. Bull. 2018, 106, 7.

[23]

S. F. Huang, M. Wang, P. Jia, B. Wang, J. J. Zhang, Y. F. Zhao, Energy Storage Mater. 2019, 20, 225.

[24]

L. C. Yang, S. N. Wang, J. J. Mao, J. W. Deng, Q. S. Gao, Y. Tang, O. G. Schmidt, Adv. Mater. 2013, 25, 8.

[25]

X. Li, J. H. Li, Q. S. Gao, X. Yu, R. Z. Hu, J. Liu, L. C. Yang, M. Zhu, Electrochim. Acta 2017, 254, 172.

[26]

Y. Wu, Y. Yu, Energy Storage Mater. 2019, 16, 323.

[27]

J. Ru, T. He, B. Chen, Y. Feng, L. Zu, Z. Wang, Q. Zhang, T. Hao, R. Meng, R. Che, C. Zhang, J. Yang, Angew. Chem. Int. Ed. 2020, 59, 34.

[28]

H. H. Chen, J. He, G. X. Ke, L. N. Sun, J. N. Chen, Y. L. Li, X. Z. Ren, L. B. Deng, P. X. Zhang, Nanoscale 2019, 11, 35.

[29]

S. Bertolazzi, J. Brivio, A. Kis, ACS Nano 2011, 5, 12.

[30]

Q. C. Pan, F. H. Zheng, Y. N. Wu, X. Ou, C. H. Yang, X. H. Xiong, M. L. Liu, J. Mater. Chem. A 2018, 6, 2.

[31]

Y. Chen, B. H. Song, X. S. Tang, L. Lu, J. M. Xue, Small 2014, 10, 8.

[32]

D. Sun, D. L. Ye, P. Liu, Y. G. Tang, J. Guo, L. Z. Wang, H. Y. Wang, Adv. Energy Mater. 2018, 8, 10.

[33]

Z. Chen, D. G. Yin, M. Zhang, Small 2018, 14, 17.

[34]

J. W. Zhou, J. Qin, X. Zhang, C. S. Shi, E. Z. Liu, J. J. Li, N. Q. Zhao, C. N. He, ACS Nano 2015, 9, 4.

[35]

G. C. Huang, T. Chen, W. X. Chen, Z. Wang, K. Chang, L. Ma, F. H. Huang, D. Y. Chen, J. Y. Lee, Small 2013, 9, 21.

[36]

K. J. Czech, B. J. Thompson, S. Kain, Q. Ding, M. J. Shearer, R. J. Hamers, S. Jin, J. C. Wright, ACS Nano 2015, 9, 12.

[37]

Y. Chen, J. Lu, S. Wen, L. Lu, J. M. Xue, J. Mater. Chem. A 2014, 2, 42.

[38]

J. X. Wu, J. P. Liu, J. Cui, S. S. Yao, M. Ihsan-Ul-Haq, N. Mubarak, E. Quattrocchi, F. Ciucci, J. K. Kim, J. Mater. Chem. A 2020, 8, 4.

[39]

Y. You, Y. W. Ye, M. L. Wei, W. J. Sun, Q. Tang, J. Zhang, X. Chen, H. Q. Li, J. Xu, Chem. Eng. J. 2019, 355, 671.

[40]

T. Liang, R. Z. Hu, H. P. Zhang, H. Y. Zhang, H. Wang, Y. P. Ouyang, J. Liu, L. C. Yang, M. Zhu, J. Mater. Chem. A 2018, 6, 16.

[41]

W. Li, Z. Chen, J. Hou, T. Xu, D. Liu, S. Leng, H. Guo, C. Chen, J. Yang, M. Wu, Appl. Surf. Sci. 2020, 515, 145902.

[42]

B. Han, W. Zhang, D. Gao, C. G. Zhou, K. S. Xia, Q. Gao, J. P. Wu, J. Power Sources 2020, 449, 8.

[43]

Q. K. Tan, Z. Kong, X. J. Chen, L. Zhang, X. Q. Hu, M. X. Mu, H. C. Sun, X. C. Shao, X. G. Guan, M. Gao, B. H. Xu, Appl. Surf. Sci. 2019, 485, 314.

[44]

Y. G. Liu, Z. Y. Cheng, H. Y. Sun, H. Arandiyan, J. P. Li, M. Ahmad, J. Power Sources 2015, 273, 878.

[45]

Y. Yang, X. Zhao, H. E. Wang, M. L. Li, C. Hao, M. Ji, S. Z. Ren, G. Z. Cao, J. Mater. Chem. A 2018, 6, 8.

[46]

T. Y. Ma, X. N. Yu, H. Y. Li, W. G. Zhang, X. L. Cheng, W. T. Zhu, X. P. Qiu, Nano Lett. 2017, 17, 6.

[47]

Y. Z. Jiang, Y. Li, P. Zhou, Z. Y. Lan, Y. H. Lu, C. Wu, M. Yan, Adv. Mater. 2017, 29, 48.

[48]

N. T. Wu, W. Z. Du, X. Gao, L. Zhao, G. L. Liu, X. M. Liu, H. Wu, Y. B. He, Nanoscale 2018, 10, 24.

[49]

R. Z. Hu, Y. P. Ouyang, T. Liang, X. Tang, B. Yuan, J. Liu, L. Zhang, L. C. Yang, M. Zhu, Energ. Environ. Sci. 2017, 10, 9.

[50]

K. Chang, W. Chen, J. Mater. Chem. 2011, 21, 43.

[51]

Z. J. Zhang, H. L. Zhao, Y. Q. Teng, X. W. Chang, Q. Xia, Z. L. Li, J. J. Fang, Z. H. Du, K. Swierczek, Adv. Energy Mater. 2018, 8, 7.

[52]

Y. Jiang, Y. Y. Wan, W. Jiang, H. H. Tao, W. R. Li, S. S. Huang, Z. W. Chen, B. Zhao, Chem. Eng. J. 2019, 367, 45.

[53]

X. X. Lan, J. Cui, X. F. Zhang, R. Z. Hu, L. Tan, J. Y. He, H. P. Zhang, X. Y. Xiong, X. F. Yang, S. Q. Wu, M. Zhu, Adv. Mater. 2022, 34, 9.

[54]

D. L. Cheng, J. W. Liu, X. Li, R. Z. Hu, M. Q. Zeng, L. C. Yang, M. Zhu, J. Power Sources 2017,

[55]

D. L. Cheng, L. C. Yang, J. W. Liu, R. Z. Hu, J. Liu, K. Pei, M. Zhu, R. C. Che, J. Mater. Chem. A 2019, 7, 25.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/