Graphene Nanoribbons Enhancing the Electronic Conductivity and Ionic Diffusion of Graphene Electrodes for High-Performance Microsupercapacitors

Yan Zhang , Huandi Zhang , Xiaoxiao Wang , Xiaowei Shi , Zehua Zhao , Yaling Wang , Jiamei Liu , Cheng Tang , Guolong Wang , Lei Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12681

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12681 DOI: 10.1002/eem2.12681
RESEARCH ARTICLE

Graphene Nanoribbons Enhancing the Electronic Conductivity and Ionic Diffusion of Graphene Electrodes for High-Performance Microsupercapacitors

Author information +
History +
PDF

Abstract

The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation, which limits electrolyte ions penetration into electrode. Increasing the space between graphene sheets in electrodes facilitates the electrolyte ions penetration, but sacrifices its electronic conductivity which also influences the charge storage ability. The challenging task is to improve the electrodes’ electronic conductivity and ionic diffusion simultaneously, boosting the device’s electrochemical performance. Herein, we experimentally realize the enhancement of both electronic conductivity and ionic diffusion from 2D graphene nanoribbons assisted graphene electrode with porous layer-upon-layer structure, which is tailored by graphene nanoribbons and self-sacrificial templates ethyl cellulose. The designed electrode-based device delivers a high areal capacitance of 71 mF cm-2 and areal energy density of 9.83 µWh cm-2, promising rate performance, outstanding cycling stability with 97% capacitance retention after 20 000 cycles, and good mechanical properties. The strategy paves the way for fabricating high-performance graphene-based MSCs.

Keywords

areal energy density / graphene / graphene nanoribbons / microsupercapacitors / structure engineering

Cite this article

Download citation ▾
Yan Zhang, Huandi Zhang, Xiaoxiao Wang, Xiaowei Shi, Zehua Zhao, Yaling Wang, Jiamei Liu, Cheng Tang, Guolong Wang, Lei Li. Graphene Nanoribbons Enhancing the Electronic Conductivity and Ionic Diffusion of Graphene Electrodes for High-Performance Microsupercapacitors. Energy & Environmental Materials, 2024, 7(4): e12681 DOI:10.1002/eem2.12681

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Zhang, D. Liu, Z.-S. Wu, W. Lei, Energy Storage Mater. 2020, 32, 402.

[2]

R. Chen, Y. Yang, Q. Huang, H. Ling, X. Li, J. Ren, K. Zhang, R. Sun, X. Wang, Energy Storage Mater. 2020, 32, 208.

[3]

B. Li, M. Yu, Z. Li, C. Yu, H. Wang, Q. Li, Adv. Funct. Mater. 2022, 32, 2201166.

[4]

H. Liu, Z. Sun, Y. Chen, W. Zhang, X. Chen, C. P. Wong, ACS Nano 2022, 16, 10088.

[5]

D. Zhao, W. Chang, C. Lu, C. Yang, K. Jiang, X. Chang, H. Lin, F. Zhang, S. Han, Z. Hou, X. Zhuang, Small 2019, 15, e1901494.

[6]

X. Li, Y. Wang, Y. Zhao, J. Zhang, L. Qu, Small Struct. 2021, 3, 2100124.

[7]

J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang, K. Wang, Z. S. Wu, Adv. Mater. 2022, 34, e2205569.

[8]

X. Jin, L. Song, C. Dai, Y. Xiao, Y. Han, X. Zhang, X. Li, C. Bai, J. Zhang, Y. Zhao, Z. Zhang, L. Jiang, L. Qu, Adv. Energy Mater. 2021, 11, 2101523.

[9]

B. Lu, X. Jin, Q. Han, L. Qu, Small 2021, 17, e2006827.

[10]

P. Sun, X. Li, J. Shao, P. V. Braun, Adv. Mater. 2021, 33, e2006229.

[11]

Z. S. Wu, K. Parvez, X. Feng, K. Müllen, Nat. Commun. 2013, 4, 2487.

[12]

S. Bellani, E. Petroni, A. E. Del Rio Castillo, N. Curreli, B. Martín-García, R. Oropesa-Nuñez, M. Prato, F. Bonaccorso, Adv. Funct. Mater. 2019, 29, 1807659.

[13]

H. Zhang, D. Yang, A. Lau, T. Ma, H. Lin, B. Jia, Small 2021, 17, e2007311.

[14]

Y. Zhang, Z. Cheng, C. Ni, Z. Wang, Y. Yu, X. Zhai, S. Xu, Z. Zhao, L. Hu, Y. Hu, Chem. Eng. J. 2022, 428, 132084.

[15]

Y. Chen, M. Guo, L. Xu, Y. Cai, X. Tian, X. Liao, Z. Wang, J. Meng, X. Hong, L. Mai, Nano Res. 2022, 15, 1492.

[16]

Z. Peng, J. Lin, R. Ye, E. L. Samuel, J. M. Tour, A. C. S. Appl, Mater. Interfaces 2015, 7, 3414.

[17]

Y. Rao, M. Yuan, F. Luo, Z. Wang, H. Li, J. Yu, X. Chen, Carbon 2021, 180, 56.

[18]

W. Zhang, Y. Lei, F. Ming, Q. Jiang, P. M. F. J. Costa, H. N. Alshareef, Adv. Energy Mater. 2018, 8, 1801840.

[19]

Y. Yuan, L. Jiang, X. Li, P. Zuo, C. Xu, M. Tian, X. Zhang, S. Wang, B. Lu, C. Shao, B. Zhao, J. Zhang, L. Qu, T. Cui, Nat. Commun. 2020, 11, 6185.

[20]

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. Samuel, M. J. Yacaman, B. I. Yakobson, J. M. Tour, Nat. Commun. 2014, 5, 5714.

[21]

Z. Yan, L. Ma, Y. Zhu, I. Lahiri, M. G. Hahm, Z. Liu, S. Yang, C. Xiang, W. Lu, Z. Peng, Z. Sun, C. Kittrell, J. Lou, W. Choi, P. M. Ajayan, J. M. Tour, ACS Nano 2013, 7, 58.

[22]

X. Feng, J. Ning, D. Wang, J. Zhang, J. Dong, C. Zhang, X. Shen, Y. Hao, J. Power Sources 2019, 418, 130.

[23]

Y. Wang, W. Zhang, X. Guo, K. Jin, Z. Chen, Y. Liu, L. Yin, L. Li, K. Yin, L. Sun, Y. Zhao, ACS Appl. Mater. Interfaces 2019, 11, 7946.

[24]

Z.-K. Wu, Z. Lin, L. Li, B. Song, K.-S. Moon, S.-L. Bai, C.-P. Wong, Nano Energy 2014, 10, 222.

[25]

C. Zhang, H. Du, K. Ma, Z. Yuan, Adv. Energy Mater. 2020, 10, 2002132.

[26]

Y. Wang, Y. Zhang, G. Wang, X. Shi, Y. Qiao, J. Liu, H. Liu, A. Ganesh, L. Li, Adv. Funct. Mater. 2020, 30, 1907284.

[27]

Z. S. Wu, K. Parvez, S. Li, S. Yang, Z. Liu, S. Liu, X. Feng, K. Mullen, Adv. Mater. 2015, 27, 4054.

[28]

B. Li, N. Hu, Y. Su, Z. Yang, F. Shao, G. Li, C. Zhang, Y. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 46044.

[29]

Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu, C. Luo, H. Zhang, F. Cheng, J. Rao, X. Hu, J. Su, Y. Gao, ACS Nano 2018, 12, 4224.

[30]

M. R. Karim, H. Shinoda, M. Nakai, K. Hatakeyama, H. Kamihata, T. Matsui, T. Taniguchi, M. Koinuma, K. Kuroiwa, M. Kurmoo, Y. Matsumoto, S. Hayami, Adv. Funct. Mater. 2013, 23, 323.

[31]

M. Cao, D. B. Xiong, L. Yang, S. Li, Y. Xie, Q. Guo, Z. Li, H. Adams, J. Gu, T. Fan, X. Zhang, D. Zhang, Adv. Funct. Mater. 2019, 29, 1806792.

[32]

V. Sedajova, A. Bakandritsos, P. Blonski, M. Medved, R. Langer, D. Zaoralova, J. Ugolotti, J. Dzibelova, P. Jakubec, V. Kupka, M. Otyepka, Energ. Environ. Sci. 2022, 15, 740.

[33]

K. S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett. 2018, 3, 482.

[34]

X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Räder, K. Müllen, J. Am. Chem. Soc. 2008, 130, 4216.

[35]

T. Wang, Z. Wang, R. V. Salvatierra, E. McHugh, J. M. Tour, Carbon 2020, 158, 615.

[36]

W. Yu, H. Zhou, B. Q. Li, S. Ding, ACS Appl. Mater. Interfaces 2017, 9, 4597.

[37]

S. Tagliaferri, G. Nagaraju, A. Panagiotopoulos, M. Och, G. Cheng, F. Iacoviello, C. Mattevi, ACS Nano 2021, 15, 15342.

[38]

H. Liu, T. Xu, C. Cai, K. Liu, W. Liu, M. Zhang, H. Du, C. Si, K. Zhang, Adv. Funct. Mater. 2022, 32, 2113082.

[39]

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.

[40]

H. Li, Y. Tao, X. Zheng, J. Luo, F. Kang, H.-M. Cheng, Q.-H. Yang, Energ. Environ. Sci. 2016, 9, 3135.

[41]

Y. Liu, X. Zhao, C. Wang, L. Zhang, M. Li, Y. Pan, Y. Fu, J. Liu, H. Lu, J. Mater. Chem. A 2018, 6, 18267.

[42]

Y. Shao, M. F El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233.

[43]

W. Liu, C. Lu, X. Wang, R. Y. Tay, B. K. Tay, ACS Nano 2015, 9, 1528.

[44]

J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang, M. Anayee, F. Pan, B. Xu, Y. Gogotsi, Adv. Energy Mater. 2020, 11, 2003025.

[45]

Y. Chen, P. Lian, J. Feng, Y. Liu, L. Wang, J. Liu, X. Shi, Chem. Eng. J. 2022, 429, 132274.

[46]

P. Zhuang, Y. Sun, L. Li, M. O. L. Chee, P. Dong, L. Pei, H. Chu, Z. Sun, J. Shen, M. Ye, P. M. Ajayan, Adv. Mater. 2020, 32, e1908072.

[47]

J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, P. M. Ajayan, Nano Lett. 2011, 11, 1423.

[48]

J. M. Munuera, J. I. Paredes, M. Enterria, S. Villar-Rodil, A. G. Kelly, Y. Nalawade, J. N. Coleman, T. Rojo, N. Ortiz-Vitoriano, A. Martinez-Alonso, J. M. D. Tascon, ACS Appl. Mater. Interfaces 2020, 12, 494.

[49]

J. Ye, H. Tan, S. Wu, K. Ni, F. Pan, J. Liu, Z. Tao, Y. Qu, H. Ji, P. Simon, Y. Zhu, Adv. Mater. 2018, 30, 1801384.

[50]

Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R. B. Kaner, Mater. Horiz. 2017, 4, 1145.

[51]

L. Zhang, D. DeArmond, N. T. Alvarez, R. Malik, N. Oslin, C. McConnell, P. K. Adusei, Y. Y. Hsieh, V. Shanov, Small 2017, 13, 1603114.

[52]

J. Zhao, Q. Shi, Y. Guo, X. Wang, D. Wang, F. Tan, L. Jiang, Y. Yu, J. Power Sources 2019, 433, 226703.

[53]

K. Lee, H. Lee, Y. Shin, Y. Yoon, D. Kim, H. Lee, Nano Energy 2016, 26, 746.

[54]

X. Shi, F. Zhou, J. Peng, R. a. Wu, Z. S. Wu, X. Bao, Adv. Funct. Mater. 2019, 29, 1902860.

[55]

H. Chen, S. Chen, Y. Zhang, H. Ren, X. Hu, Y. Bai, ACS Appl. Mater. Interfaces 2020, 12, 56319.

[56]

B. Chen, Z. T. Johnson, D. Sanborn, R. G. Hjort, N. T. Garland, R. R. A. Soares, B. Van Belle, N. Jared, J. Li, D. Jing, E. A. Smith, C. L. Gomes, J. C. Claussen, ACS Nano 2021, 16, 15.

[57]

B. Nie, X. Li, J. Shao, C. Li, P. Sun, Y. Wang, H. Tian, C. Wang, X. Chen, Nanoscale 2019, 11, 19772.

[58]

Y. Wu, Y. Zhang, Y. Liu, P. Cui, S. Chen, Z. Zhang, J. Fu, E. Xie, ACS Appl. Mater. Interfaces 2020, 12, 42933.

[59]

H. Liu, Y. Xie, J. Liu, K.-s. Moon, L. Lu, Z. Lin, W. Yuan, C. Shen, X. Zang, L. Lin, Y. Tang, C.-P. Wong, Chem. Eng. J. 2020, 393, 124672.

[60]

M. Yuan, F. Luo, Z. Wang, H. Li, Y. Rao, J. Yu, Y. Wang, D. Xie, X. Chen, C. P. Wong, ACS Appl. Mater. Interfaces 2021, 13, 22426.

[61]

F. Li, J. Qu, Y. Li, J. Wang, M. Zhu, L. Liu, J. Ge, S. Duan, T. Li, V. K. Bandari, M. Huang, F. Zhu, O. G. Schmidt, Adv. Sci. (Weinh) 2020, 7, 2001561.

[62]

M. Wang, J. Chen, K. Lu, Y. Ma, H. Li, J. Ye, Electrochim. Acta 2022, 401, 139490.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/