High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells

Zhaorui Wen , Chao Liang , Shengwen Li , Gang Wang , Bingchen He , Hao Gu , Junpeng Xie , Hui Pan , Zhenhuang Su , Xingyu Gao , Guo Hong , Shi Chen

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12680

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) :e12680 DOI: 10.1002/eem2.12680
RESEARCH ARTICLE

High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells

Author information +
History +
PDF

Abstract

Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites. However, their incomplete passivation and chaotic usage amounts are not conducive to the preparation of high-quality perovskite films. Herein, we succeeded in obtaining higher-quality CsPbBr3 films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO2 substrates. Benefiting from the inert and atomic smooth graphene surface, the CsPbBr3 film grown on top by the van der Waal epitaxy has higher crystallinity, improved (100) orientation, and an average domain size of up to 1.22 µm. Meanwhile, a strong downward band bending is observed at the graphene/perovskite interface, improving the electron extraction to the electron transport layers (ETL). As a result, perovskite film grown on graphene has lower photoluminescence (PL) intensity, shorter carrier lifetime, and fewer defects. Finally, a photovoltaic device based on epitaxy CsPbBr3 film is fabricated, exhibiting power conversion efficiency (PCE) of up to 10.64% and stability over 2000 h in the air.

Keywords

all-inorganic perovskite solar cells / buried interface modification / monolayer graphene / van der Waals epitaxial growth

Cite this article

Download citation ▾
Zhaorui Wen, Chao Liang, Shengwen Li, Gang Wang, Bingchen He, Hao Gu, Junpeng Xie, Hui Pan, Zhenhuang Su, Xingyu Gao, Guo Hong, Shi Chen. High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells. Energy & Environmental Materials, 2024, 7(4): e12680 DOI:10.1002/eem2.12680

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Liu, Y.-B. Cheng, Z. Ge, Chem. Soc. Rev. 2020, 49, 1653.

[2]

L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, V. Biju, Chem. Soc. Rev. 2020, 49, 2869.

[3]

C. Liang, H. Gu, J. Xia, T. Liu, S. Mei, N. Zhang, Y. Chen, G. Xing, Carbon Energy 2023, 5, e251.

[4]

J. Zeng, L. Bi, Y. Cheng, B. Xu, A. K. Y. Jen, Nano Res. Energy 2022, 1, e9120004.

[5]

B. Li, Z. Li, X. Wu, Z. Zhu, Nano Res. Energy 2022, 1, e9120011.

[6]

L. Q. Wang, L. Wen, Y. Y. Tong, S. H. Wang, X. G. Hou, X. D. An, S. X. Dou, J. Liang, Carbon Energy 2021, 3, 225.

[7]

R. He, X. Z. Huang, M. Chee, F. Hao, P. Dong, Carbon Energy 2019, 1, 109.

[8]

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

[9]

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444.

[10]

W. Xiang, W. Tress, Adv. Mater. 2019, 31, 1902851.

[11]

K. Domanski, B. Roose, T. Matsui, M. Saliba, S.-H. Turren-Cruz, J.-P. Correa-Baena, C. R. Carmona, G. Richardson, J. M. Foster, F. De Angelis, J. M. Ball, A. Petrozza, N. Mine, M. K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt, A. Abate, Energy Environ. Sci. 2017, 10, 604.

[12]

J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829.

[13]

J. Chen, W. C. H. Choy, Sol. RRL 2020, 4, 2000408.

[14]

W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.

[15]

C. Liang, G. Xing, Energy Environ. Mater. 2021, 4, 500.

[16]

R. Guo, J. Xia, H. Gu, X. Chu, Y. Zhao, X. Meng, Z. Wu, J. Li, Y. Duan, Z. Li, Z. Wen, S. Chen, Y. Cai, C. Liang, Y. Shen, G. Xing, W. Zhang, G. Shao, J. Mater. Chem. A 2023, 11, 408.

[17]

C. Zhen, T. Wu, R. Chen, L. Wang, G. Liu, H.-M. Cheng, ACS Sustain. Chem. Eng. 2019, 7, 4586.

[18]

Z. Dai, S. K. Yadavalli, M. Chen, A. Abbaspourtamijani, Y. Qi, N. P. Padture, Science 2021, 372, 618.

[19]

R. C. Shallcross, S. Olthof, K. Meerholz, N. R. Armstrong, ACS Appl. Mater. Interfaces 2019, 11, 32500.

[20]

C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.

[21]

H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. d. Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.

[22]

Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng, Z. Shao, G. Cui, S. Pang, Adv. Energy Mater. 2019, 9, 1902142.

[23]

D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. Liu, Nat. Commun. 2018, 9, 3239.

[24]

Z. Liu, L. Qiu, L. K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D.-Y. Son, Y. Dang, S. Kazaoui, Y. Qi, Nat. Energy 2020, 5, 596.

[25]

K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K. Y. Jen, H. J. Snaith, ACS Nano 2014, 8, 12701.

[26]

M. Valles-Pelarda, B. C. Hames, I. García-Benito, O. Almora, A. Molina-Ontoria, R. S. Sánchez, G. Garcia-Belmonte, N. Martín, I. Mora-Sero, J. Phys. Chem. Lett. 2016, 7, 4622.

[27]

Q. Dong, C. Zhu, M. Chen, C. Jiang, J. Guo, Y. Feng, Z. Dai, S. K. Yadavalli, M. Hu, X. Cao, Y. Li, Y. Huang, Z. Liu, Y. Shi, L. Wang, N. P. Padture, Y. Zhou, Nat. Commun. 2021, 12, 973.

[28]

B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale, K. Bertens, H. Chen, A. Proppe, Q. Zhou, D. Yu, K. Xu, M. Vafaie, Y. Liu, Y. Dong, E. H. Jung, C. Zheng, T. Zhu, Z. Ning, E. H. Sargent, Adv. Mater. 2021, 33, 2103394.

[29]

C.-C. Zhang, S. Yuan, Y.-H. Lou, Q.-W. Liu, M. Li, H. Okada, Z.-K. Wang, Adv. Mater. 2020, 32, 2001479.

[30]

M. Zhang, M. Ye, W. Wang, C. Ma, S. Wang, Q. Liu, T. Lian, J. Huang, Z. Lin, Adv. Mater. 2020, 32, 2000999.

[31]

X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan, J. Zhu, D. Zhou, Y. Wu, C. Chen, H. Song, Adv. Funct. Mater. 2020, 30, 2003295.

[32]

J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma, X. Niu, N. Li, C. Shi, Z. Qiu, H. Zhou, Y. Bai, Q. Chen, Adv. Mater. 2021, 33, 2102947.

[33]

T. J. Macdonald, A. J. Clancy, W. Xu, Z. Jiang, C.-T. Lin, L. Mohan, T. Du, D. D. Tune, L. Lanzetta, G. Min, T. Webb, A. Ashoka, R. Pandya, V. Tileli, M. A. McLachlan, J. R. Durrant, S. A. Haque, C. A. Howard, J. Am. Chem. Soc. 2021, 143, 21549.

[34]

A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D. V. Kuznetsov, D. Saranin, A. Di Carlo, Nat. Mater. 2019, 18, 1228.

[35]

G. Tang, P. You, Q. Tai, A. Yang, J. Cao, F. Zheng, Z. Zhou, J. Zhao, P. K. L. Chan, F. Yan, Adv. Mater. 2019, 31, 1807689.

[36]

E. Zhao, L. Gao, S. Yang, L. Wang, J. Cao, T. Ma, Nano Res. 2018, 11, 5913.

[37]

W. Chen, K. Li, Y. Wang, X. Feng, Z. Liao, Q. Su, X. Lin, Z. He, J. Phys. Chem. Lett. 2017, 8, 591.

[38]

L. L. Jiang, Z. K. Wang, M. Li, C. C. Zhang, Q. Q. Ye, K. H. Hu, D. Z. Lu, P. F. Fang, L. S. Liao, Adv. Funct. Mater. 2018, 28, 1705875.

[39]

C.-C. Chung, S. Narra, E. Jokar, H.-P. Wu, E. W.-G. Diau, J. Mater. Chem. A 2017, 5, 13957.

[40]

Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan, Q. Tang, Adv. Sci. 2021, 8, 2101418.

[41]

B. Wang, J. Iocozzia, M. Zhang, M. Ye, S. Yan, H. Jin, S. Wang, Z. Zou, Z. Lin, Chem. Soc. Rev. 2019, 48, 4854.

[42]

L. Fagiolari, F. Bella, Energy Environ. Sci. 2019, 12, 3437.

[43]

X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, Y. Zhang, H. Segawa, M. Grätzel, L. Han, Nat. Energy 2022, 7, 520.

[44]

M. P. Hautzinger, E. K. Raulerson, S. P. Harvey, T. Liu, D. Duke, X. Qin, R. A. Scheidt, B. M. Wieliczka, A. J. Phillips, K. R. Graham, V. Blum, J. M. Luther, M. C. Beard, J. L. Blackburn, J. Am. Chem. Soc. 2023, 145, 2052.

[45]

J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung, M. Choi, Energy Environ. Sci. 2017, 10, 337.

[46]

S. Wang, X. Huang, H. Sun, C. Wu, Nanoscale Res. Lett. 2017, 12, 619.

[47]

T. H. Chowdhury, M. Akhtaruzzaman, M. E. Kayesh, R. Kaneko, T. Noda, J.-J. Lee, A. Islam, Sol. Energy 2018, 171, 652.

[48]

H. Yang, N. Liu, M. Ran, Z. He, R. Meng, M. Chen, H. Lu, Y. Yang, J. Mater. Sci. Mater. Electron. 2020, 31, 3603.

[49]

E. Nouri, M. R. Mohammadi, Z.-X. Xu, V. Dracopoulos, P. Lianos, Phys. Chem. Chem. Phys. 2018, 20, 2388.

[50]

H.-S. Kim, B. Yang, M. M. Stylianakis, E. Kymakis, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Cell Rep. Phys. Sci. 2020, 1, 100053.

[51]

A. Agresti, S. Pescetelli, B. Taheri, A. E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, ChemSusChem 2016, 9, 2609.

[52]

M. Dadashbeik, D. Fathi, M. Eskandari, Sol. Energy 2020, 207, 917.

[53]

F. Biccari, F. Gabelloni, E. Burzi, M. Gurioli, S. Pescetelli, A. Agresti, A. E. Del Rio Castillo, A. Ansaldo, E. Kymakis, F. Bonaccorso, A. Di Carlo, A. Vinattieri, Adv. Energy Mater. 2017, 7, 1701349.

[54]

L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.

[55]

Z. Li, L. Kong, S. Huang, L. Li, Angew. Chem. 2017, 129, 8246.

[56]

C. Ma, M. Grätzel, N.-G. Park, ACS Energy Lett. 2022, 7, 3120.

[57]

K. Huang, L. Yuan, S. Feng, Inorg. Chem. Front. 2015, 2, 965.

[58]

J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Nat. Commun. 2018,

[59]

X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, Nat. Energy 2020, 5, 131.

[60]

Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, Matter 2021, 4, 1683.

[61]

Y. Kim, S. S. Cruz, K. Lee, B. O. Alawode, C. Choi, Y. Song, J. M. Johnson, C. Heidelberger, W. Kong, S. Choi, K. Qiao, I. Almansouri, E. A. Fitzgerald, J. Kong, A. M. Kolpak, J. Hwang, J. Kim, Nature 2017, 544, 340.

[62]

W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, D. Lee, T. Osadchy, R. J. Molnar, D. K. Gaskill, Nat. Mater. 2018, 17, 999.

[63]

E. M. Miller, Y. Zhao, C. C. Mercado, S. K. Saha, J. M. Luther, K. Zhu, V. Stevanović, C. L. Perkins, J. van de Lagemaat, Phys. Chem. Chem. Phys. 2014, 16, 22122.

[64]

R. Garg, N. K. Dutta, N. R. Choudhury, Nanomaterials 2014, 4, 267.

[65]

J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, X. Chen, Photonics Res. 2021, 9, 151.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/