Bias-Free Solar-to-Hydrogen Conversion in a BiVO4/PM6:Y6 Compact Tandem with Optically Balanced Light Absorption

Catarina G. Ferreira , Constanza Sansierra , Francisco Bernal-Texca , Mingyu Zhang , Carles Ros , Jordi Martorell

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12679

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12679 DOI: 10.1002/eem2.12679
RESEARCH ARTICLE

Bias-Free Solar-to-Hydrogen Conversion in a BiVO4/PM6:Y6 Compact Tandem with Optically Balanced Light Absorption

Author information +
History +
PDF

Abstract

The high voltage required to overcome the thermodynamic threshold and the complicated kinetics of the water splitting reaction limit the efficiency of single semiconductor-based photoelectrochemistry. A semiconductor/solar cell tandem structure has been theoretically demonstrated as a viable path to achieve an efficient direct transformation of sunlight into chemical energy. However, compact designs exhibiting the indispensable optimally balanced light absorption have not been demonstrated. In the current work, we design and implement a compact tandem providing the complementary absorption of a highly transparent BiVO4 photoanode and a PM6:Y6 solar cell. Such bandgap combination approaches the optimal to reach the solar-to-hydrogen (STH) conversion upper limit for tandem photoelectrochemical cells (PECs). We demonstrate that, by using a photonic multilayer structure to adequately balance sunlight absorption among both tandem materials, a 25% increase in the bias-free STH conversion can be achieved, setting a clear path to take compact tandem PECs to the theoretical limit performance.

Keywords

bismuth vanadate / compact tandem / organic solar cells / photonic multilayers / solar-to-hydrogen conversion

Cite this article

Download citation ▾
Catarina G. Ferreira, Constanza Sansierra, Francisco Bernal-Texca, Mingyu Zhang, Carles Ros, Jordi Martorell. Bias-Free Solar-to-Hydrogen Conversion in a BiVO4/PM6:Y6 Compact Tandem with Optically Balanced Light Absorption. Energy & Environmental Materials, 2024, 7(4): e12679 DOI:10.1002/eem2.12679

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. M. Wolff, P. D. Frischmann, M. Schulze, B. J. Bohn, R. Wein, P. Livadas, M. T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J. K. Stolarczyk, Nat. Energy 2018, 3, 862.

[2]

P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 2016, 16, 1776.

[3]

R. Marschall, Eur. J. Inorg. Chem. 2021, 2021, 2435.

[4]

J. K. Stolarczyk, S. Bhattacharyya, L. Polavarapu, J. Feldmann, ACS Catal. 2018, 8, 3602.

[5]

C. Ros, T. Andreu, J. R. Morante, J. Mater. Chem. A Mater. 2020, 8, 10625.

[6]

T. Higashi, H. Nishiyama, Y. Suzuki, Y. Sasaki, T. Hisatomi, M. Katayama, T. Minegishi, K. Seki, T. Yamada, K. Domen, Angew. Chem. Int. Ed. Engl. 2019, 58, 2300.

[7]

K. Y. Yoon, J. Park, M. Jung, S. G. Ji, H. Lee, J. H. Seo, M. J. Kwak, S. Il Seok, J. H. Lee, J. H. Jang, Nat. Commun. 2021,

[8]

Y. Kawase, T. Higashi, K. Domen, K. Takanabe, Adv. Energy Sustain. Res. 2021, 2, 2100023.

[9]

S. Wang, P. Chen, Y. Bai, J. H. Yun, G. Liu, L. Wang, Adv. Mater. 2018,

[10]

R. A. Gurudayal, P. P. John, C. Boix, C. Yi, M. C. Shi, S. A. Scott, A. M. Veldhuis, S. M. Minor, L. H. Zakeeruddin, M. Wong, N. Grätzel, N. Mathews, ChemSusChem 2017, 10, 2449.

[11]

S. Xiao, C. Hu, H. Lin, X. Meng, Y. Bai, T. Zhang, Y. Yang, Y. Qu, K. Yan, J. Xu, Y. Qiu, S. Yang, J. Mater. Chem. A Mater. 2017, 5, 19091.

[12]

Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, Sci. Rep. 2015,

[13]

Y. Qiu, W. Liu, W. Chen, G. Zhou, P. C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, Y. Cui, Sci. Adv. 2016, 2, e1501764.

[14]

X. Li, M. Jia, Y. Lu, N. Li, Y. Z. Zheng, X. Tao, M. Huang, Electrochim. Acta 2020, 330, 135183.

[15]

J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang, Y. H. Lee, D. S. Kim, Y. Jun, J. S. Lee, ACS Nano 2015, 9, 11820.

[16]

M. S. Prévot, K. Sivula, J. Phys. Chem. C 2013, 117, 17879.

[17]

B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen, T. G. Deutsch, B. D. James, K. N. Baum, G. N. Baum, S. Ardo, H. Wang, E. Miller, T. F. Jaramillo, Energy Environ. Sci. 1983, 2013, 6.

[18]

K. T. Fountaine, H. J. Lewerenz, H. A. Atwater, Nat. Commun. 2016,

[19]

L. C. Seitz, Z. Chen, A. J. Forman, B. A. Pinaud, J. D. Benck, T. F. Jaramillo, ChemSusChem 2014, 7, 1372.

[20]

C. C. Katsidis, D. I. Siapkas, Appl. Opt. 2002, 41, 3978.

[21]

R. A. J Janssen, J. Nelson, Adv. Mater. 1847, 2013, 25.

[22]

A. Grimm, A. Sainte-Marie, G. J. Kramer, M. Gazzani, Int. J. Hydrog. Energy 2022, 47, 11764.

[23]

M. R. Shaner, K. T. Fountaine, H. J. Lewerenz, Appl. Phys. Lett. 2013, 103, 143905.

[24]

P. Mantilla-Perez, T. Feurer, J. P Correa-Baena, Q. Liu, S. Colodrero, J. Toudert, M. Saliba, S. Buecheler, A. Hagfeldt, A. N. Tiwari, J. Martorell, ACS Photonics 2017, 4, 861.

[25]

S. M. Hosseini, N. Tokmoldin, Y. W. Lee, Y. Zou, H. Y. Woo, D. Neher, S. Shoaee, Solar RRL 2020, 4, 2000498.

[26]

Q. Liu, J. Toudert, T. Li, M. Kramarenko, G. Martínez-Denegri, L. Ciammaruchi, X. Zhan, J. Martorell, Adv. Energy Mater. 2019,

[27]

Q. Liu, P. Romero-gomez, P. Mantilla-perez, S. Colodrero, J. Toudert, J. Martorell, Adv. Energy Mater. 2017, 7, 1700356.

[28]

F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell, J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman, K. M. Yu, J. Yang, L. Chen, M. R. Shaner, J. Spurgeon, F. A. Houle, K. A. Persson, I. D. Sharp, Nat. Commun. 2016, 7, 12012.

[29]

L. Bolzonello, F. Bernal-Texca, L. G. Gerling, J. Ockova, E. Collini, J. Martorell, N. F. Van Hulst, J. Phys. Chem. Lett. 2021, 12, 3983.

[30]

X. Elias, Q. Liu, C. Gimbert-Suriñach, R. Matheu, P. Mantilla-Perez, A. Martinez-Otero, X. Sala, J. Martorell, A. Llobet, ACS Catal. 2016, 6, 3310.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/