High-Quality and Wafer-Scale Cubic Silicon Carbide Single Crystals

Guobin Wang , Da Sheng , Yunfan Yang , Hui Li , Congcong Chai , Zhenkai Xie , Wenjun Wang , Jiangang Guo , Xiaolong Chen

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12678

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12678 DOI: 10.1002/eem2.12678
RESEARCH ARTICLE

High-Quality and Wafer-Scale Cubic Silicon Carbide Single Crystals

Author information +
History +
PDF

Abstract

Cubic silicon carbide (3C-SiC) has superior mobility and thermal conduction over that of widely applied hexagonal 4H-SiC. Moreover, much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices like metal-oxide-semiconductor field effect transistors. However, the growth of high-quality and wafer-scale 3C-SiC crystals has remained a big challenge up to now despite decades-long efforts by researchers because of its easy transformation into other polytypes during growth, limiting the development of 3C-SiC-based devices. Herein, we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique, beyond what is expected by classical nucleation theory. This enables the steady growth of high-quality and large-size 3C-SiC crystals (2–4-inch in diameter and 4.0–10.0 mm in thickness) sustainable. The as-grown 3C-SiC crystals are free of other polytypes and have high-crystalline quality. Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals, offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.

Keywords

cubic SiC / high-temperature solution growth / high-temperature surface tension / solid–liquid interfacial energy / wide band gap semiconductor

Cite this article

Download citation ▾
Guobin Wang, Da Sheng, Yunfan Yang, Hui Li, Congcong Chai, Zhenkai Xie, Wenjun Wang, Jiangang Guo, Xiaolong Chen. High-Quality and Wafer-Scale Cubic Silicon Carbide Single Crystals. Energy & Environmental Materials, 2024, 7(4): e12678 DOI:10.1002/eem2.12678

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. R. Eddy Jr., D. K. Gaskill, Science 2009, 324, 1398.

[2]

T.-H. Lee, S. Bhunia, M. Mehregany, Science 2010, 329, 1316.

[3]

M. Chaturvedi, S. Dimitrijev, D. Haasmann, H. A. Moghadam, P. Pande, U. Jadli, Sci. Rep. 2022, 12, 4076.

[4]

J. B. Casady, R. W. Johnson, Solid State Electron. 1996, 39, 1409.

[5]

P. Chiu, E. Dogmus, Yole Dévelop. 2022, DOI: https://www.yolegroup.com/product/report/power-sic-2022/.

[6]

B. Shi, A. I. Ramones, Y. Liu, H. Wang, Y. Li, S. Pischinger, J. Andert, IET Power Electron. 2023, 16, 2103.

[7]

Z. Cheng, J. Liang, K. Kawamura, H. Zhou, H. Asamura, H. Uratani, J. Tiwari, S. Graham, Y. Ohno, Y. Nagai, T. Feng, N. Shigekawa, D. G. Cahill, Nat. Commun. 2022, 13, 7201.

[8]

F. La Via, M. Zimbone, C. Bongiorno, A. La Magna, G. Fisicaro, I. Deretzis, V. Scuderi, C. Calabretta, F. Giannazzo, M. Zielinski, R. Anzalone, M. Mauceri, D. Crippa, E. Scalise, A. Marzegalli, A. Sarikov, L. Miglio, V. Jokubavicius, M. Syvajarvi, R. Yakimova, P. Schuh, M. Scholer, M. Kollmuss, P. Wellmann, Materials 2021, 14, 5348.

[9]

F. La Via, Compoundsemiconductor.net 2022, 28, 36.

[10]

M. Jennings, Compoundsemiconducor.net 2022, 28, 52.

[11]

M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron Devices 1993, 40, 645.

[12]

S. N. Gorin, L. M. Ivanova, Phys. Status Solidi (b) 1997, 202, 221.

[13]

H.-P. Phan, P. Hoang-Phuong, T. Dinh, T. Kozeki, A. Qamar, T. Namazu, S. Dimitrijev, N. Nam-Trung, D. Dzung Viet, Sci. Rep. 2016, 6, 28499.

[14]

P. Tanner, A. Iacopi, H.-P. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D. V. Dao, N.-T. Nguyen, Sci. Rep. 2017, 7, 17734.

[15]

A. Schöner, M. Krieger, G. Pensl, M. Abe, H. Nagasawa, Chem. Vap. Depos. 2006, 12, 523.

[16]

M. Soueidan, G. Ferro, Adv. Funct. Mater. 2006, 16, 975.

[17]

R. Vasiliauskas, S. Juillaguet, M. Syväjärvi, R. Yakimova, J. Cryst. Growth 2012, 348, 91.

[18]

K. Semmelroth, M. Krieger, G. Pensl, H. Nagasawa, R. Puesche, M. Hundhausen, L. Ley, M. Nerding, H. P. Strunk, J. Cryst. Growth 2007, 308, 241.

[19]

T. Ujihara, R. Maekawa, R. Tanaka, K. Sasaki, K. Kuroda, Y. Takeda, J. Cryst. Growth 2008, 310, 1438.

[20]

T. Ujihara, K. Seki, R. Tanaka, S. Kozawa, Alexander, K. Morimoto, K. Sasaki, Y. Takeda, J. Cryst. Growth 2011, 318, 389.

[21]

S. Parthasarathy, Compoundsemiconductor.net 2021, 27, 20.

[22]

D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatori, Nature 2004, 430, 1009.

[23]

V. Jokubavicius, G. R. Yazdi, R. Liljedahl, I. G. Ivanov, R. Yakimova, M. Syvajarvi, Cryst. Growth Des. 2014, 14, 6514.

[24]

R. Vasiliauskas, M. Marinova, P. Hens, P. J. Wellmann, M. Syväjärvi, R. Yakimova, Cryst. Growth Des. 2012, 12, 197.

[25]

M. Schöler, F. La Via, M. Mauceri, P. J. Wellmann, Cryst. Growth Des. 2021, 21, 4046.

[26]

V. Jokubavicius, G. R. Yazdi, R. Liljedahl, I. G. Ivanov, J. W. Sun, X. Y. Liu, P. Schuh, M. Wilhelm, P. Wellmann, R. Yakimova, M. Syvajarvi, Cryst. Growth Des. 2015, 15, 2940.

[27]

C. H. Park, B.-H. Cheong, K.-H. Lee, K. J. Chang, Phys. Rev. B 1994, 49, 4485.

[28]

S. Ramakers, A. Marusczyk, M. Amsler, T. Eckl, M. Mrovec, T. Hammerschmidt, R. Drautz, Phys. Rev. B 2022, 106, 075201.

[29]

I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Adv. Colloid Interf. Sci. 2010, 159, 198.

[30]

G. Wang, D. Sheng, H. Li, Z. Zhang, L. Guo, Z. Guo, W. Yuan, W. Wang, X. Chen, CrystEngComm 2023, 25, 560.

[31]

L. Patrick, W. J. Choyke, Phys. Rev. 1969, 186, 775.

[32]

S. Rohmfeld, M. Hundhausen, L. Ley, Phys. Rev. B 1998, 58, 9858.

[33]

H. Mukaida, H. Okumura, J. H. Lee, H. Daimon, E. Sakuma, S. Misawa, K. Endo, S. Yoshida, J. Appl. Phys. 1987, 62, 254.

[34]

S. Nakashima, H. Harima, Phys. Status Solidi (a) 1997, 162, 39.

[35]

M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, Adv. Funct. Mater. 2007, 17, 939.

[36]

R. W. Bartlett, M. Barlow, J. Electrochem. Soc. 1970, 117, 1436.

[37]

P. G. Neudeck, J. A. Powell, D. J. Spry, A. J. Trunek, X. Huang, W. M. Vetter, M. Dudley, M. Skowronski, J. Q. Liu, Mater. Sci. Forum 2003, 433–436, 213.

[38]

C. Calabretta, V. Scuderi, C. Bongiorno, A. Cannizzaro, R. Anzalone, L. Calcagno, M. Mauceri, D. Crippa, S. Boninelli, F. La Via, Cryst. Growth Des. 2022, 22, 4996.

[39]

T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, K. Arai, J. Cryst. Growth 2004, 260, 209.

[40]

J. Takahashi, M. Kanaya, Y. Fujiwara, J. Cryst. Growth 1994, 135, 61.

[41]

J. Heindl, W. Dorsch, H. P. Strunk, S. G. Müller, R. Eckstein, D. Hofmann, A. Winnacker, Phys. Rev. Lett. 1998, 80, 740.

[42]

R. Hristu, S. G. Stanciu, D. E. Tranca, A. Matei, G. A. Stanciu, Sci. Rep. 2014, 4, 5258.

[43]

R. W. Bartlett, G. W. Martin, J. Appl. Phys. 1968, 39, 2324.

[44]

S. Kawanishi, R. Watanabe, H. Shibata, Cryst. Growth Des. 2020, 20, 4740.

[45]

Wolfspeed homepage, http://n-Type SiC Substrates | Wolfspeed (accessed: June 2024).

RIGHTS & PERMISSIONS

2023 Institute of Physics, CAS. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/