Low-Volatile Binder Enables Thermal Shock-Resistant Thin-Film Cathodes for Thermal Batteries

Yong Xie , Yong Cao , Xu Zhang , Liangping Dong , Xiaojiang Liu , Yixiu Cui , Chao Wang , Yanhua Cui , Xuyong Feng , Hongfa Xiang , Long Qie

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12677

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12677 DOI: 10.1002/eem2.12677
RESEARCH ARTICLE

Low-Volatile Binder Enables Thermal Shock-Resistant Thin-Film Cathodes for Thermal Batteries

Author information +
History +
PDF

Abstract

Manufacturing thin-film components is crucial for achieving high-efficiency and high-power thermal batteries (TBs). However, developing binders with low-gas production at the operating temperature range of TBs (400–550°C) has proven to be a significant challenge. Here, we report the use of acrylic acid derivative terpolymer (LA136D) as a low-volatile binder for thin-film cathode fabrication and studied the chain scission and chemical bond-breaking mechanisms in pyrolysis. It is shown LA136D defers to random-chain scission and cross-linking chain scission mechanisms, which gifts it with a low proportion of volatile products (ψ, ψ = 39.2 wt%) at even up to 550°C, well below those of the conventional PVDF (77.6 wt%) and SBR (99.2 wt%) binders. Surprisingly, LA136D contributes to constructing a thermal shock-resistant cathode due to the step-by-step bond-breaking process. This is beneficial for the overall performance of TBs. In discharging test, the thin-film cathodes exhibited a remarkable 440% reduction in polarization and 300% enhancement in the utilization efficiency of cathode materials, while with just a slight increase of 0.05 MPa in gas pressure compared with traditional “thick-film” cathode. Our work highlights the potential of LA136D as a low-volatile binder for thin-film cathodes and shows the feasibility of manufacturing high-efficiency and high-power TBs through polymer molecule engineering.

Keywords

gas production / high-power / low-volatile binder / thermal battery / thin-film cathode

Cite this article

Download citation ▾
Yong Xie, Yong Cao, Xu Zhang, Liangping Dong, Xiaojiang Liu, Yixiu Cui, Chao Wang, Yanhua Cui, Xuyong Feng, Hongfa Xiang, Long Qie. Low-Volatile Binder Enables Thermal Shock-Resistant Thin-Film Cathodes for Thermal Batteries. Energy & Environmental Materials, 2024, 7(4): e12677 DOI:10.1002/eem2.12677

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ASB corporation home page, https://www.asb-group.com/ (accessed: August 2023).

[2]

Eaglepicher corporation home page, Thermal batteries, https://www.eaglepicher.com/products/thermal-batteries/ (accessed: August 2023).

[3]

R. A. Guidotti, P. Masset, J. Power Sources 2006, 161, 1443.

[4]

J. Ko, S. H. Kang, H.-W. Cheong, Y. S. Yoon, J. Ko, S. H. Kang, H.-W. Cheong, Y. S. Yoon, J. Korean Ceram. Soc. 2019, 56, 233.

[5]

J. Ko, I. Y. Kim, H. Cheong, Y. S. Yoon, J. Am. Ceram. Soc. 2017, 100, 4435.

[6]

J. Ko, I. Y. Kim, H. M. Jung, H. Cheong, Y. S. Yoon, Ceram. Int. 2017, 43, 5789.

[7]

C. A. Apblett, Thin Film Thermal Battery Development for High Rate Applications, Sandia National Lab. (SNL-NM), Albuquerque, NM, USA 2016.

[8]

E. Allcorn, G. Montoya Nagasubramanian, B. M. Height, H. E. Apblett, C. A. Anderson, T. Anderson, Film Coating of Electrodes for High Power Density Thermal Batteries, Sandia National Lab. (SNL-NM), Albuquerque, NM, USA 2018.

[9]

D. V. Kumar, D. Joshi, Fuze Power Supply Systems, ARDE Technical.

[10]

R. Guidotti, S. Preston, Electrode fabrication processes for thermal batteries, 5th International Energy Conversion Engineering Conference and Exhibit (IECEC). St. Louis, Missouri, June 2007.

[11]

T. Leviatan, Development of thin layer electrochemical components for advanced thermal batteries, 9th Annual International Energy Conversion Engineering Conference. San Diego, California, July-August 2011.

[12]

T. D. Manh, T.-T. Tan, J.-K. Chang, J. Mater. Res. Technol. 2021, 13, 1139.

[13]

Y. S. Zhang, N. E. Courtier, Z. Zhang, K. Liu, J. J. Bailey, A. M. Boyce, G. Richardson, P. R. Shearing, E. Kendrick, D. J. Brett, Adv. Energy Mater. 2022, 12, 2102233.

[14]

E. Kendrick, Advancements in manufacturing, Future lithium-ion batteries, The Royal Society of Chemistry, London 2019.

[15]

F. M. Delnick, F. W. Reinhardt, J. G. Odinek, US Patent 7947397.2011.

[16]

Z. Liao, L. Fu, J. Zhu, W. Yang, D. Li, L. Zhou, J. Power Sources 2020, 463, 228237.

[17]

I. Oh, J. Cho, K. Kim, J. Ko, H. Cheong, Y. S. Yoon, H. M. Jung, Energies 2018, 11, 3154.

[18]

F. C. Krieger, M. S. Ding, Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries, US Army Research Lab, Adelphi 2015.

[19]

I. Y. Kim, S. P. Woo, J. Ko, S.-H. Kang, Y. S. Yoon, H.-W. Cheong, J.-H. Lim, Front. Chem. 2020, 7, 904.

[20]

J. Hu, Y. Chu, Q. Tian, J. Wang, Y. Li, Q. Wu, L. Zhao, Y. Zhu, Mater. Lett. 2018, 215, 296.

[21]

L. H. Gaabour, J. Mater. 2015, 82485910, 1155.

[22]

F. M. Delnick, US Patent 8460823.2013.

[23]

C. L. Beyler, M. M. Hirschler, SFPE handbook of fire protection engineering, industrial safety & environmental protection, Massachusetts 2002.

[24]

K. S. Lau, Handbook of Thermoset Plastics, Elsevier, Amsterdam, Netherlands 2014, pp. 297–424.

[25]

P. Kori, B. H. Vadavadagi, R. K. Khatirkar, Mater. Today Proc. 2020, 28, 1895.

[26]

C. Huang, H. Yang, Y. Li, Y. Cheng, Anal. Lett. 2015, 48, 2011.

[27]

M.-H. Yang, Polym. Test. 2000, 19, 105.

[28]

S. Madorsky, S. Straus, J. Res. Natl Bur. Stand. 1954, 53, 361.

[29]

Y. Tao, C. Wei, H. Fei, Y. An, Y. Tian, H. Wei, S. Xiong, J. Feng, J. Power Sources 2020, 455, 227967.

[30]

Y. Tao, Y. Tian, Y. An, C. Wei, Y. Li, Q. Zhang, J. Feng, Sustain. Mater. Technol. 2021, 27, 238.

[31]

J. T. Li, Z. Y. Wu, Y. Q. Lu, Y. Zhou, Q. S. Huang, L. Huang, S. G. Sun, Adv. Energy Mater. 2017, 7, 1701185.

[32]

J. R. Sweeney, I. McKirdy, R. Comrie, I. Stewart, Some Advances in the Application of Thermal Battery Technology, ASB Group, France 2004.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/