Machine Learning-Assisted Fabrication of PCBM-Perovskite Solar Cells with Nanopatterned TiO2 Layer

Siti Norhasanah Sanimu , Hwa-Young Yang , Jeevan Kandel , Ye-Chong Moon , Gangasagar Sharma Gaudel , Seung-Ju Yu , Yong Ju Kim , Sejung Kim , Bong-Hyun Jun , Won-Yeop Rho

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12676

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12676 DOI: 10.1002/eem2.12676
RESEARCH ARTICLE

Machine Learning-Assisted Fabrication of PCBM-Perovskite Solar Cells with Nanopatterned TiO2 Layer

Author information +
History +
PDF

Abstract

To unlock the full potential of PSCs, machine learning (ML) was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide (mp-TiO2) and weight percentage (wt%) of phenyl-C61-butyric acid methyl ester (PCBM), along with the current density (Jsc), open-circuit voltage (Voc), fill factor (ff), and energy conversion efficiency (ECE). Then, the combination that yielded the highest predicted ECE was selected as a reference to fabricate PCBM-PSCs with nanopatterned TiO2 layer. Subsequently, the PCBM-PSCs with nanopatterned TiO2 layers were fabricated and characterized to further understand the effects of nanopatterning depth and wt% of PCBM on PSCs. Experimentally, the highest ECE of 17.338% is achieved at 127 nm nanopatterning depth and 0.10 wt% of PCBM, where the Jsc, Voc, and ff are 22.877 mA cm-2, 0.963 V, and 0.787, respectively. The measured Jsc, Voc, ff, and ECE values show consistencies with the ML prediction. Hence, these findings not only revealed the potential of ML to be used as a preliminary investigation to navigate the research of PSCs but also highlighted that nanopatterning depth has a significant impact on Jsc, and the incorporation of PCBM on perovskite layer influenced the Voc and ff, which further boosted the performance of PSCs.

Keywords

machine learning / nanopatterning / PCBM / perovskite solar cells / prediction

Cite this article

Download citation ▾
Siti Norhasanah Sanimu, Hwa-Young Yang, Jeevan Kandel, Ye-Chong Moon, Gangasagar Sharma Gaudel, Seung-Ju Yu, Yong Ju Kim, Sejung Kim, Bong-Hyun Jun, Won-Yeop Rho. Machine Learning-Assisted Fabrication of PCBM-Perovskite Solar Cells with Nanopatterned TiO2 Layer. Energy & Environmental Materials, 2024, 7(4): e12676 DOI:10.1002/eem2.12676

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. I. Jordan, T. M. Mitchell, Science 2015, 349, 255.

[2]

W. Liu, Y. Lu, D. Wei, X. Huo, X. Huang, Y. Li, J. Meng, S. Zhao, B. Qiao, Z. Liang, J. Mater. Chem. A 2022, 10, 17782.

[3]

Y. Liu, W. Yan, S. Han, H. Zhu, Y. Tu, L. Guan, X. Tan, Solar RRL 2022, 6, 2101100.

[4]

J. Li, B. Pradhan, S. Gaur, J. Thomas, Adv. Energy Mater. 2019, 9, 1901891.

[5]

Z. Wei, Q. He, Y. Zhao, J. Power Sources 2022, 549, 232125.

[6]

A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. Van De Krol, T. Moehl, M. Grätzel, J.-E. Moser, Nat. Photonics 2014, 8, 250.

[7]

C. Barugkin, J. Cong, T. Duong, S. Rahman, H. T. Nguyen, D. Macdonald, T. P. White, K. R. Catchpole, J. Phys. Chem. Lett. 2015, 6, 767.

[8]

C. Ma, Y. Shi, W. Hu, M. H. Chiu, Z. Liu, A. Bera, F. Li, H. Wang, L. J. Li, T. Wu, Adv. Mater. 2016, 28, 3683.

[9]

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, G. Cao, Phys. Chem. Chem. Phys. 2012, 14, 14982.

[10]

M. R. Luo, Encyclopedia of Color Science and Technology, Springer, New York, NY, USA 2016.

[11]

S. M. Kang, S. Jang, J. K. Lee, J. Yoon, D. E. Yoo, J. W. Lee, M. Choi, N. G. Park, Small 2016, 12, 2443.

[12]

M. Hörantner, W. Zhang, M. Saliba, K. Wojciechowski, H. Snaith, Energy Environ. Sci. 2015, 8, 2041.

[13]

K. Yamamoto, T. Kuwabara, K. Takahashi, T. Taima, Jpn. J. Appl. Phys. 2015, 54, 8KF02.

[14]

S. Kuppan, A. K. Shukla, D. Membreno, D. Nordlund, G. Chen, Adv. Energy Mater. 2017, 7, 1602010.

[15]

D.-L. Wang, H.-J. Cui, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, G. Su, Sci. Rep. 2016, 6, 18922.

[16]

H.-Y. Yang, A. Chuquer, S.-H. Han, G. S. Gaudel, X.-H. Pham, H.-M. Kim, W.-J. Yun, B.-H. Jun, W.-Y. Rho, Int. J. Mol. Sci. 2021, 22, 12235.

[17]

J. Hu, X. Xiong, W. Guan, H. Long, Energy 2021, 21, 100769.

[18]

N. Martín, Adv. Energy Mater. 2017, 7, 1601102.

[19]

A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, H. J. Snaith, Nano Lett. 2013, 13, 3124.

[20]

C.-H. Chiang, C.-G. Wu, Nat. Photonics 2016, 10, 196.

[21]

L. Breiman, Classification and regression trees, Routledge, London, UK 2017.

[22]

S. Wright, J. Agric. Res. 1921, 20, 557.

[23]

C. Sammut, G. Webb, Encyclopedia of machine learning, Springer, Boston, MA, USA 2010.

[24]

D. Chicco, M. J. Warrens, G. Jurman, PeerJ Computer Sci. 2021, 7, e623.

[25]

Z. Zhang, H. Wang, T. J. Jacobsson, J. Luo, Nat. Commun. 2022, 13, 7639.

[26]

K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Agric. Nat. Resour. 2008, 42, 357.

[27]

Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 2013, 4, 2880.

[28]

D. L. Pavia, G. M. Lampman, G. S. Kriz, J. A. Vyvyan, Introduction to Spectroscopy, Cengage Learning, Stamford, CT, USA 2014.

[29]

Y. Kesari, A. Athawale, Mater. Lett. 2015, 159, 87.

[30]

W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354.

[31]

Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T. H. Zeng, Y. Sun, Part. Part. Syst. Charact. 2014, 31, 509.

[32]

K.-P. Kim, W. H. Kim, S. M. Kwon, J. Y. Kim, Y. S. Do, S. Woo, Nano 2021, 11, 1233.

[33]

W.-K. Kuo, J.-J. Hsu, C.-K. Nien, H. H. Yu, ACS Appl. Mater. Interfaces 2016, 8, 32021.

[34]

K. Wang, Y. Shi, B. Li, L. Zhao, W. Wang, X. Wang, X. Bai, S. Wang, C. Hao, T. Ma, Adv. Mater. 2016, 28, 1891.

[35]

B. Yılmaz, R. Yıldırım, Nano Energy 2021, 80, 105546.

[36]

S. M. Abdulrahim, Z. Ahmad, M. Q. Mehmood, S. Paek, J. Bhadra, N. J Al-Thani, M. K. Nazeeruddin, A. Belaidi, M. Amani, J. Electroanal. Chem. 2021, 902, 115800.

[37]

D. Li, C. Sun, H. Li, H. Shi, X. Shai, Q. Sun, J. Han, Y. Shen, H.-L. Yip, F. Huang, Chem. Sci. 2017, 8, 4587.

[38]

D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.

[39]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.

[40]

Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Adv. Funct. Mater. 2020, 30, 1908920.

[41]

Z. Zhang, B. Men, Y. Liu, H. Gao, Y. Mao, Nanoscale Res. Lett. 2017,

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/