Wearable Triboelectric Nanogenerators Based on Printed Polyvinylidene Fluoride Films Incorporated with Cobalt-Based Metal–Organic Framework for Self-Powered Mobile Electronics

Myeong-Hyeon Kim , Sang-Joon Park , Tae-Jun Ha

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12675

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12675 DOI: 10.1002/eem2.12675
RESEARCH ARTICLE

Wearable Triboelectric Nanogenerators Based on Printed Polyvinylidene Fluoride Films Incorporated with Cobalt-Based Metal–Organic Framework for Self-Powered Mobile Electronics

Author information +
History +
PDF

Abstract

In this study, wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride (PVDF) films incorporated with cobalt-based metal–organic framework (Co-MOF) were developed. The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from α-crystals to β-crystals, as facilitated by the incorporation of the MOF. The synthesis conditions, including metal ion, concentration, and particle size of the MOF, were optimized to increase open-circuit voltage (VOC) and open-circuit current (ISC) of PVDF-based TENGs. In addition to high operational stability, mechanical robustness, and long-term reliability, the developed TENG consisting of PVDF incorporated with Co-MOF (Co-MOF@PVDF) achieved a VOC of 194 V and an ISC of 18.8 µA. Furthermore, the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system (GPS) device. The local position of the user in real-time through GPS was displayed on a mobile interface, powered by the battery charged through friction-induced electricity generation.

Keywords

bar printing / phase transition / polyvinylidene fluoride incorporated with cobalt-based metal–organic framework / self-powered mobile electronics / wearable triboelectric nanogenerators

Cite this article

Download citation ▾
Myeong-Hyeon Kim, Sang-Joon Park, Tae-Jun Ha. Wearable Triboelectric Nanogenerators Based on Printed Polyvinylidene Fluoride Films Incorporated with Cobalt-Based Metal–Organic Framework for Self-Powered Mobile Electronics. Energy & Environmental Materials, 2024, 7(4): e12675 DOI:10.1002/eem2.12675

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. C. Kang, H. J. Choi, S. J. Park, T. J. Ha, Energy 2021, 233, 121196.

[2]

Y. Zou, V. Raveendran, J. Chen, Nano Energy 2020, 77, 105303.

[3]

Y. Kim, X. Wu, C. Lee, J. H. Oh, ACS Appl. Mater. Interfaces 2021, 13, 36967.

[4]

L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang, H. Xu, J. Chen, W. Xuan, S. Zhang, S. Li, X. Wang, J. Luo, Nano Energy 2021, 80, 105599.

[5]

T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu, S. Lee, D. Kim, M. Sharifuzzaman, S. S. Rana, J. Y. Park, Adv. Funct. Mater. 2022, 32, 2202145.

[6]

D. T. K Ong, J. S. C. Koay, M. T. Sim, K. C. Aw, T. Nakajima, B. Chen, S. T. Tan, W. C. Gan, Nano Energy 2023, 113, 108555.

[7]

B. Hedau, B. C. Kang, T. J. Ha, ACS Nano 2022, 16, 18355.

[8]

X. Pu, J. W. Zha, C. L. Zhao, S. B. Gong, J. F. Gao, R. K. Y. Li, Chem. Eng. J. 2020, 398, 125526.

[9]

S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H. J. Shin, S. W. Kim, J. H. Cho, Adv. Funct. Mater. 2018, 28, 1703778.

[10]

H. Patnam, B. Dudem, S. A. Graham, J. S. Yu, Energy 2021, 223, 120031.

[11]

S. Ippili, V. Jella, A. M. Thomas, C. Yoon, J. S. Jung, S. G. Yoon, J. Mater. Chem. A 2021, 9, 15993.

[12]

D. J. Sim, G. J. Choi, S. H. Sohn, I. K. Park, J. Alloys Compd. 2022, 898, 162805.

[13]

P. Geng, M. Du, X. Guo, H. Pang, Z. Tian, P. Braunstein, Q. Xu, Energy Environ. Mater. 2022, 5, 599.

[14]

B. Hedau, B. C. Kang, S. J. Park, T. J. Ha, J. Electrochem. Soc. 2022, 169, 087504.

[15]

Y. Guo, Y. Cao, Z. Chen, R. Li, W. Gong, W. Yang, Q. Zhang, H. Wang, Nano Energy 2020, 70, 104517.

[16]

H. Xu, L. Wang, J. Zhong, T. Wang, J. Cao, Y. Wang, X. Li, H. Fei, J. Zhu, X. Duan, Energy Environ. Mater. 2020, 3, 177.

[17]

L. Jin, X. Xiao, W. Deng, A. Nashalian, D. He, V. Raveendran, C. Yan, H. Su, X. Chu, T. Yang, W. Li, W. Yang, J. Chen, Nano Lett. 2020, 20, 6404.

[18]

Y. Ding, Y. Shi, J. Nie, Z. Ren, S. Li, F. Wang, J. Tian, X. Chen, Z. L. Wang, Chem. Eng. J. 2020, 388, 124369.

[19]

C. Huang, G. Lu, N. Qin, Z. Shao, D. Zhang, C. Soutis, Y. Y. Zhang, L. Mi, H. Hou, ACS Appl. Mater. Interfaces 2022, 14, 16424.

[20]

K. Han, W. Tang, J. Chen, J. Luo, L. Xu, Z. L. Wang, Adv. Mater. Techol. 2019, 4, 1800569.

[21]

R. K. Cheedarala, A. N. Parvez, K. K. Ahn, Nano Energy 2018, 53, 362.

[22]

A. Okbaz, Energ. Conver. Manage. 2022, 270, 116204.

[23]

Y. He, H. Wang, Z. Sha, C. Boyer, C. H. Wang, J. Zhang, Nano Energy 2022, 98, 107343.

[24]

Y. Li, S. Xiao, Y. Luo, S. Tian, J. Tang, X. Zhang, J. Xiong, Nano Energy 2022, 104, 107884.

[25]

W. Wang, J. Xu, H. Zheng, F. Chen, K. Jenkins, Y. Wu, H. Wang, W. Zhang, R. Yang, Nanoscale 2018, 10, 14747.

[26]

D. Tantraviwat, M. Ngamyingyoud, W. Sripumkhai, P. Pattamang, G. Rujijanagul, B. Inceesungvorn, ACS Omega 2021, 6, 29765.

[27]

G. Li, G. Liu, W. He, L. Long, B. Li, Z. Wang, Q. Tang, W. Liu, C. Hu, Nano Res. 2021, 14, 4204.

[28]

H. Wu, Z. Wang, Y. Zi, Adv. Energy Mater. 2021, 11, 2100038.

[29]

M. M. Hasan, M. S. B. Sadeque, I. Albasar, H. Pecenek, F. K. Dokan, M. S. Onses, M. Ordu, Small 2023, 19, 2206107.

[30]

B. Wang, X. Yin, D. Peng, Y. Zhang, W. Wu, X. Gu, B. Na, R. Lv, H. Liu, Compos. Part B Eng. 2020, 191, 107978.

[31]

D. Guo, K. Cai, Y. Wang, J. Mater. Chem. C 2017, 5, 2531.

[32]

E. H. Abdelhamid, O. D. Jayakumar, V. Kotari, B. P. Mandal, R. Rao, V. M. Naik, R. Naik, A. K. Tyagi, RSC Adv. 2016, 6, 20089.

[33]

B. Dutta, E. Kar, N. Bose, S. Mukherjee, RSC Adv. 2015, 5, 105422.

[34]

Z. Wang, T. Wang, M. Fang, C. Wang, Y. Xiao, Y. Pu, Compos. Sci. Technol. 2017, 146, 139.

[35]

R. Wen, J. Guo, A. Yu, K. Zhang, J. Kou, Y. Zhu, Y. Zhang, B. W. Li, J. Zhai, Nano Energy 2018, 50, 140.

[36]

A. L. Ahmad, U. R. Farooqui, N. A. Hamid, Polymer 2018, 142, 330.

[37]

J. Choi, K. Lee, M. Lee, T. Kim, S. Eom, J. H. Sim, W. B. Lee, Y. Kim, C. Park, Y. Kang, Adv. Electron. Mater. 2023, 9, 2200279.

[38]

E. Ghafari, X. Jiang, N. Lu, Adv. Compos. Hybrid Mater. 2018, 1, 332.

[39]

N. Soin, D. Boyer, K. Prashanthi, S. Sharma, A. A. Narasimulu, J. Luo, T. H. Shah, E. Siores, T. Thundat, Chem. Commun. 2015, 51, 8257.

[40]

M. Kumar, X. Xiong, Z. Wan, Y. Sun, D. C. W. Tsang, J. Gupta, B. Gao, X. Cao, J. Tang, Y. S. Ok, Bioresour. Technol. 2020, 312, 123613.

[41]

H. Yue, L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, B. Wang, J. Alloys Compd. 2017, 691, 755.

[42]

H. Shin, S. Lee, H. S. Jung, J. B. Kim, Ceram. Int. 2013, 39, 8963.

[43]

W. Xu, M. C. Wong, J. Hao, Nano Energy 2019, 55, 203.

[44]

Y. Feng, Y. Zheng, S. Ma, D. Wang, F. Zhou, W. Liu, Nano Energy 2016, 19, 48.

[45]

W. G. Kim, D. W. Kim, I. W. Tcho, J. K. Kim, M. S. Kim, Y. K. Choi, ACS Nano 2021, 15, 258.

[46]

P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, Z. L. Wang, Nano Res. 2014, 7, 990.

[47]

Y. Xie, S. Wang, L. Lin, Q. Jing, Z. H. Lin, S. Niu, Z. Wu, Z. L. Wang, ACS Nano 2013, 7, 7119.

[48]

P. Parajuli, B. Sharma, H. Behlow, A. M. Rao, Adv. Mater. Technol. 2020, 5, 2000295.

[49]

B. Lee, H. Cho, S. Jeong, J. Yoon, D. Jang, D. K. Lee, Y. Hong, J. Inf. Disp. 2022, 23, 163.

[50]

Z. Wang, Z. Ruan, W. S. Ng, H. Li, Z. Tang, Z. Liu, Y. Wang, H. Hu, C. Zhi, Small Methods 2018, 2, 1800150.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/