Lignite-Based Hierarchical Porous C/SiOx Composites as High-Performance Anode for Potassium-Ion Batteries

Zexu Yang , Shouwang Zhao , Rongji Jiao , Gengyu Hao , Yunying Liu , Wenxiu He , Jingwei Chen , Guixiao Jia , Jinlong Cui , Shaohui Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12674

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12674 DOI: 10.1002/eem2.12674
RESEARCH ARTICLE

Lignite-Based Hierarchical Porous C/SiOx Composites as High-Performance Anode for Potassium-Ion Batteries

Author information +
History +
PDF

Abstract

Silicon oxide (SiOx, 0 < x ≤ 2) has been recognized as a prominent anode material in lithium-ion batteries and sodium-ion batteries due to its high theoretical capacity, suitable electrochemical potential, and earth abundance. However, it is intrinsically poor electronic conductivity and excessive volume expansion during potassiation/depotassiation process hinder its application in potassium-ion batteries. Herein, we reported a hierarchical porous C/SiOx potassium-ion batteries anode using lignite as raw material via a one-step carbonization and activation method. The amorphous C skeleton around SiOx particles can effectively buffer the volume expansion, and improve the ionic/electronic conductivity and structural integrity, achieving outstanding rate capability and cyclability. As expected, the obtained C/SiOx composite delivers a superb specific capacity of 370 mAh g-1 at 0.1 A g-1 after 100 cycles as well as a highly reversible capacity of 208 mAh g-1 after 1200 cycles at 1.0 A g-1. Moreover, the potassium ion storage mechanism of C/SiOx electrodes was investigated by ex-situ X-ray diffraction and transmission electron microscopy, revealing the formation of reversible products of K6.8Si45.3 and K4SiO4, accompanied by generation of irreversible K2O after the first cycle. This work sheds light on designing low-cost Si-based anode materials for high-performance potassium-ion batteries and beyond.

Keywords

anode / hierarchical porous C/SiO x / K 4SiO 4 / lignite / potassium-ion batteries

Cite this article

Download citation ▾
Zexu Yang, Shouwang Zhao, Rongji Jiao, Gengyu Hao, Yunying Liu, Wenxiu He, Jingwei Chen, Guixiao Jia, Jinlong Cui, Shaohui Li. Lignite-Based Hierarchical Porous C/SiOx Composites as High-Performance Anode for Potassium-Ion Batteries. Energy & Environmental Materials, 2024, 7(4): e12674 DOI:10.1002/eem2.12674

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zhou, L.-J. Wan, Y.-G. Guo, Adv. Mater. 2013, 25, 2152.

[2]

J. Xu, Y. Xu, C. Lai, T. Xia, B. Zhang, X. Zhou, Sci. China Chem. 2021, 64, 1267.

[3]

L. F. Zhao, Z. Hu, W. H. Lai, Y. Tao, J. Peng, Z. C. Miao, Y. X. Wang, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2020, 11, 2002704.

[4]

X. Wu, Y. Chen, Z. Xing, C. W. K. Lam, S. S. Pang, W. Zhang, Z. Ju, Adv. Energy Mater. 2019, 9, 1900343.

[5]

M. Sha, L. Liu, H. Zhao, Y. Lei, Carbon Energy 2020, 2, 350.

[6]

B. Cao, Q. Zhang, H. Liu, B. Xu, S. Zhang, T. Zhou, J. Mao, W. K. Pang, Z. Guo, A. Li, J. Zhou, X. Chen, H. Song, Adv. Energy Mater. 2018, 8, 1801149.

[7]

A. Li, L. Duan, J. Liao, J. Sun, Y. Man, X. Zhou, ACS Appl. Energy Mater. 2022, 5, 11789.

[8]

Y. Du, Z. Zhang, Y. Xu, J. Bao, X. Zhou, Acta Phys. Chim. Sin. 2022, 38, 2205017.

[9]

J. Liao, Q. Hu, Y. Du, J. Li, L. Duan, J. Bao, X. Zhou, Sci. Bull. 2022, 67, 2208.

[10]

J. Han, M. Xu, Y. Niu, G. N. Li, M. Wang, Y. Zhang, M. Jia, C. M. Li, Chem. Commun. 2016, 52, 11274.

[11]

I. Sultana, M. M. Rahman, Y. Chen, A. M. Glushenkov, Adv. Funct. Mater. 2018, 28, 1703857.

[12]

L. C. Loaiza, L. Monconduit, V. Seznec, Small 2020, 16, e1905260.

[13]

T. Ramireddy, R. Kali, M. K. Jangid, V. Srihari, H. K. Poswal, A. Mukhopadhyay, J. Electrochem. Soc. 2017, 164, A2360.

[14]

W. D. McCulloch, X. Ren, M. Yu, Z. Huang, Y. Wu, ACS Appl. Mater. Interfaces 2015, 7, 26158.

[15]

J. Huang, X. Lin, H. Tan, B. Zhang, Adv. Energy Mater. 2018, 8, 1703496.

[16]

S. Lee, S. C. Jung, Y.-K. Han, J. Power Sources 2019, 415, 119.

[17]

Y. Sun, Y. Zhao, Z. Liang, H. Lin, Z. Ren, Z. Yao, Y. Yin, P. Huai, K. Yang, J. Lin, Y. Huang, W. Wen, X. Li, R. Tai, D. Zhu, Chem. Eng. J. 2022, 435, 134961.

[18]

Z. Yang, Y. Song, C. Zhang, J. He, X. Li, X. Wang, N. Wang, Y. Li, C. Huang, Adv. Energy Mater. 2021, 11, 2101197.

[19]

T. D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B. A. Korgel, ACS Nano 2014, 8, 915922.

[20]

L. Yue, W. Zhang, J. Yang, L. Zhang, Electrochim. Acta 2014, 125, 206.

[21]

J. Ge, Q. Tang, H. Shen, F. Zhou, H. Zhou, W. Yang, J. Hong, B. Xu, J. Saddique, Appl. Surf. Sci. 2021, 552, 149446.

[22]

P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang, X. Liu, J. Power Sources 2015, 542, 550.

[23]

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.

[24]

K. S. W Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.

[25]

N. Xiao, X. Zhang, C. Liu, Y. Wang, H. Li, J. Qiu, Carbon 2019, 147, 574.

[26]

Y. An, H. Fei, G. Zeng, L. Ci, S. Xiong, J. Feng, Y. Qian, ACS Nano 2018, 12, 4993.

[27]

Z. Li, H. Zhao, P. Lv, ECS Meeting Abstr. 2018, 422, 1.

[28]

P. Li, J.-Y. Hwang, S.-M. Park, Y.-K. Sun, J. Mater. Chem. A 2018, 6, 12551.

[29]

M. Graczyk-Zajac, D. Vrankovic, P. Waleska, C. Hess, P. V. Sasikumar, S. Lauterbach, H. J. Kleebe, G. D. Sorarù, J. Mater. Chem. A 2018, 93, 103.

[30]

Y. Zhang, Z. Mu, J. Lai, Y. Chao, Y. Yang, P. Zhou, Y. Li, W. Yang, Z. Xia, S. Guo, ACS Nano 2019, 13, 2167.

[31]

H. Zhang, K. Liu, Y. Liu, Z. Lang, W. He, L. Ma, J. Man, G. Jia, J. Cui, J. Sun, J. Power Sources 2020, 447, 227400.

[32]

J. Cui, H. Zhang, Y. Liu, S. Li, W. He, J. Hu, J. Sun, Electrochim. Acta 2020, 334, 135619.

[33]

J. Cui, J. Yang, J. Man, S. Li, J. Yin, L. Ma, W. He, J. Sun, J. Hu, Electrochim. Acta 2019, 300, 470.

[34]

J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng, S. Xiong, Adv. Mater. 2018, 30, 1700104.

[35]

G. Xia, C. Wang, P. Jiang, J. Lu, J. Diao, Q. Chen, J. Mater. Chem. A 2019, 7, 12317.

[36]

Z. Sang, D. Su, J. Wang, Y. Liu, H. Ji, Chem. Eng. J. 2020, 381, 122677.

[37]

J. Zhao, X. Zou, Y. Zhu, Y. Xu, C. Wang, Adv. Funct. Mater. 2016, 26, 8103.

[38]

X. Li, X. Sun, Z. Gao, X. Hu, R. Ling, S. Cai, C. Zheng, W. Hu, Nanoscale 2018, 10, 2301.

[39]

M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo, H. Yang, Adv. Energy Mater. 2018, 8, 1800171.

[40]

Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Adv. Energy Mater. 2016, 6, 1501874.

[41]

P. Xiong, X. Zhao, Y. Xu, ChemSusChem 2018, 11, 202.

[42]

W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu, V. Barone, L. Hu, Nano Lett. 2015, 15, 7671.

[43]

Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu, Y. Lei, Nat. Commun. 2018, 9, 1720.

[44]

H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao, H. Zhu, Nano Lett. 2018, 18, 7407.

[45]

W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang, S. Guo, Adv. Energy Mater. 2018, 8, 1701648.

[46]

X. Zhao, F. Gong, Y. Zhao, B. Huang, D. Qian, H.-E. Wang, W. Zhang, Z. Yang, Chem. Eng. J. 2020, 392, 123675.

[47]

Q. Liu, F. Han, J. Zhou, Y. Li, L. Chen, F. Zhang, D. Zhou, C. Ye, J. Yang, X. Wu, J. Liu, ACS Appl. Mater. Interfaces 2020, 12, 20838.

[48]

C. Liu, N. Xiao, H. Li, Q. Dong, Y. Wang, H. Li, S. Wang, X. Zhang, J. Qiu, Chem. Eng. J. 2020, 382, 121759.

[49]

X. Wang, L. Ma, J. Sun, ACS Appl. Mater. Interfaces 2019, 11, 41297.

[50]

Y. Du, X. Wang, J. Sun, Nano Res. 2020, 14, 754.

[51]

J. Man, K. Liu, Y. Du, J. Sun, Mater. Chem. Phys. 2020, 256, 123669.

[52]

J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun, ACS Appl. Mater. Interfaces 2016, 8, 30239.

[53]

M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng, H. He, J. Power Sources 2015, 288, 53.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/