Electrochemical Activation-Induced Structural Transformation in Ni(OH)2/Ti3C2Tx/NF Systems with Enhanced Electrochemical Performance for Hybrid Supercapacitors

Chuming Xu , Lu Dai , Yiming Zhao , Shuang Li , Yapan Wu , Xueqian Wu , Gaixia Zhang , Shuhui Sun , Dongsheng Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12672

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12672 DOI: 10.1002/eem2.12672
RESEARCH ARTICLE

Electrochemical Activation-Induced Structural Transformation in Ni(OH)2/Ti3C2Tx/NF Systems with Enhanced Electrochemical Performance for Hybrid Supercapacitors

Author information +
History +
PDF

Abstract

Exploring a novel strategy for large-scale production of battery-type Ni(OH)2-based composites, with excellent capacitive performance, is still greatly challenging. Herein, we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)2/Ti3C2Tx composite on the nickel foam (NF) collector, where Ti3C2Tx is not only a conductive component, but also a catalyst that accelerates the oxidation of NF to Ni(OH)2. Detailed analysis reveals that the crystallinity, morphology, and electronic structure of the integrated electrode can be tuned via the electrochemical activation, which is beneficial for improving electrical conductivity and redox activity. As expected, the integrated electrode shows a specific capacity of 1.09 C cm-2 at 1 mA cm-2 after three custom activation cycles and maintains 92.4% of the initial capacity after 1500 cycles. Moreover, a hybrid supercapacitor composed of Ni(OH)2/Ti3C2Tx/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm-2 at a power density of 0.97 mW cm-2, and excellent cycling stability with about 110% capacity retention rate after 5000 cycles. This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)2-based composite materials as binder-free electrodes for hybrid supercapacitors.

Keywords

electrochemical activation / hybrid supercapacitors / Ni(OH) 2 / Ti 3C 2T x

Cite this article

Download citation ▾
Chuming Xu, Lu Dai, Yiming Zhao, Shuang Li, Yapan Wu, Xueqian Wu, Gaixia Zhang, Shuhui Sun, Dongsheng Li. Electrochemical Activation-Induced Structural Transformation in Ni(OH)2/Ti3C2Tx/NF Systems with Enhanced Electrochemical Performance for Hybrid Supercapacitors. Energy & Environmental Materials, 2024, 7(4): e12672 DOI:10.1002/eem2.12672

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. P. Chatterjee, A. K. Nandi, J. Mater. Chem. A 2021, 9, 15880.

[2]

J. Zhou, S. Zhang, Y.-N. Zhou, W. Tang, J. Yang, C. Peng, Z. Guo, Electrochem. Energy Rev. 2021, 4, 219.

[3]

P. Lu, D. Wu, L. Chen, H. Li, F. Wu, Electrochem. Energy Rev. 2022, 5, 3.

[4]

X. Luo, S. Chen, T. Hu, Y. Chen, F. Li, SusMat 2021, 1, 211.

[5]

H. Liu, X. Liu, S. Wang, H.-K. Liu, L. Li, Energy Storage Mater. 2020, 28, 122.

[6]

Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou, H. Huang, Adv. Funct. Mater. 2017, 27, 1605307.

[7]

H.-C. Chen, L.-Y. Hou, C. He, P.-J. Laing, C.-Y. Huang, W.-S. Kuo, ACS Appl. Energy Mater. 2022, 5, 8262.

[8]

S. Natarajan, M. Ulaganathan, V. Aravindan, J. Mater. Chem. A 2021, 9, 15542.

[9]

D. S. Hall, D. J. Lockwood, C. Bock, B. R. MacDougall, Proc. Royal Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792.

[10]

H. Chai, X. Peng, T. Liu, X. Su, D. Jia, W. Zhou, RSC Adv. 2017, 7, 36617.

[11]

L. Wang, X. Li, T. Guo, X. Yan, B. K. Tay, Int. J. Hydrogen Energy 2014, 39, 7876.

[12]

Z. Qin, J. Liu, B. Sun, H. Zou, L. Chen, Y. Xu, Y. Cao, C. Chen, Electrochim. Acta 2022, 435, 141370.

[13]

S. Xu, X. Li, Z. Yang, T. Wang, W. Jiang, C. Yang, S. Wang, N. Hu, H. Wei, Y. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 27868.

[14]

B. Dong, M. Li, S. Chen, W. Ding, W. Wei, G. Gao, S. Ding, ACS Appl. Mater. Interfaces 2017, 9, 17890.

[15]

Z. Pan, F. Cao, X. Hu, X. Ji, J. Mater. Chem. A 2019, 7, 8984.

[16]

L. Xu, L. Zhang, B. Cheng, J. Yu, Carbon 2019, 152, 652.

[17]

J. Lu, H. Duan, Y. Zhang, G. Zhang, Z. Chen, Y. Song, R. Zhu, H. Pang, ACS Appl. Mater. Interfaces 2022, 14, 25878.

[18]

X. Liu, Y. Yang, X. Xing, T. Zou, Z. Wang, Y. Wang, ChemElectroChem 2018, 5, 434.

[19]

X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Nano Energy 2015, 11, 154.

[20]

L. Lyu, J. Hu, K. Cheng, D. Lin, K. Li, Z. Lu, H. Yao, L. Zhou, Carbon 2022, 188, 177.

[21]

C. Deng, J. He, G. Wang, K. Wang, W. Dong, X. Hong, Appl. Surf. Sci. 2023, 616, 156526.

[22]

G. Liu, Y. Qin, Y. Lyu, M. Chen, P. Qi, Y. Lu, Z. Sheng, Y. Tang, Chem. Eng. J. 2021, 426, 131248.

[23]

D. Ye, Y. Yu, J. Tang, L. Liu, Y. Wu, Nanoscale 2016, 8, 10406.

[24]

Y. Li, J. Zhou, J. Song, X. Liang, Z. Zhang, D. Men, D. Wang, X.-E. Zhang, Biosens. Bioelectron. 2019, 144, 111534.

[25]

Y. Zhang, Y. Liu, Z. Sun, J. Fu, S. Cheng, P. Cui, J. Zhou, Z. Zhang, X. Pan, W. Han, E. Xie, J. Mater. Chem. A 2019, 7, 21290.

[26]

X. Zou, J. Hao, Y. Zhou, F. Chen, Q. Hu, B. Xiang, H. Yang, M. Deng, J. Alloys Compd. 2021, 855, 157332.

[27]

X. Yang, Y. Tian, S. Li, Y.-P. Wu, Q. Zhang, D.-S. Li, S. Zhang, J. Mater. Chem. A 2022, 10, 12225.

[28]

M. S. Javed, X. Zhang, S. Ali, A. Mateen, M. Idrees, M. Sajjad, S. Batool, A. Ahmad, M. Imran, T. Najam, W. Han, Nano Energy 2022, 101, 107624.

[29]

M. Hu, H. Zhang, T. Hu, B. Fan, X. Wang, Z. Li, Chem. Soc. Rev. 2020, 49, 6666.

[30]

X. Yang, C. Xu, S. Li, Y.-P. Wu, X.-Q. Wu, Y.-M. Yin, D.-S. Li, J. Colloid Interface Sci. 2022, 617, 633.

[31]

Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H. N. Alshareef, Adv. Energy Mater. 2018, 8, 1703043.

[32]

M. Naquib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Hen, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[33]

Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 2016, 45, 5925.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/