Lowering Sodium-Storage Lattice Strains of Layered Oxide Cathodes by Pushing Charge Transfer on Anions

Na Li , Wen Yin , Baotian Wang , Fangwei Wang , Xiaoling Xiao , Jinkui Zhao , Enyue Zhao

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12671

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12671 DOI: 10.1002/eem2.12671
RESEARCH ARTICLE

Lowering Sodium-Storage Lattice Strains of Layered Oxide Cathodes by Pushing Charge Transfer on Anions

Author information +
History +
PDF

Abstract

Due to a high energy density, layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes. However, they readily suffer from multiple phase transitions during the Na extraction process, resulting in large lattice strains which are the origin of cycled-structure degradations. Here, we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions (O2-). Specifically, the designed O3-type Ru-based model compound, which shows an increased charge transfer on anions, displays retarded O3–P3–O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy, in situ X-ray diffraction and geometric phase analysis. Meanwhile, the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84% and ultralow voltage decay of 0.2 mV/cycle after 300 cycles. More broadly, our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’ redox activity and Na-diffusion kinetics.

Keywords

anionic redox reaction / lattice strains / layered oxide cathodes / phase transitions / sodium-ion battery

Cite this article

Download citation ▾
Na Li, Wen Yin, Baotian Wang, Fangwei Wang, Xiaoling Xiao, Jinkui Zhao, Enyue Zhao. Lowering Sodium-Storage Lattice Strains of Layered Oxide Cathodes by Pushing Charge Transfer on Anions. Energy & Environmental Materials, 2024, 7(4): e12671 DOI:10.1002/eem2.12671

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C 1980, 99, 81.

[2]

Y. Y. Wang, Y. Y. Wang, S. Liu, G. R. Li, Z. Zhou, N. Xu, M. T. Wu, X. P. Gao, Energy Environ. Mater. 2022, 5, 1260.

[3]

J. Y. Hwang, S. T. Myung, D. Aurbach, Y. K. Sun, J. Power Sources 2016, 324, 106.

[4]

L. Sun, Y. Xie, X. Z. Liao, H. Wang, G. Tan, Z. Chen, Y. Ren, J. Gim, W. Tang, Y. S. He, K. Amine, Z. F. Ma, Small 2018, 14, e1704523.

[5]

Y. P. Li, Q. Guan, J. L. Cheng, B. Wang, Energy Environ. Mater. 2022, 5, 1285.

[6]

H. Xia, X. Zhu, J. Liu, Q. Liu, S. Lan, Q. Zhang, X. Liu, J. K. Seo, T. Chen, L. Gu, Y. S. Meng, Nat. Commun. 2018, 9, 5100.

[7]

C. L. Zhao, Q. D. Wang, Z. P. Yao, J. L. Wang, B. S. Lengeling, F. X. Ding, X. G. Qi, Y. X. Lu, X. D. Bai, B. H. Li, A. A. Hong Li, X. J. Guzik, C. Huang, M. Delmas, L. Q. Wagemaker, Y. S. H. Chen, Science 2020, 370, 708.

[8]

Q. Zhang, Y. Huang, Y. Liu, S. Sun, K. Wang, Y. Li, X. Li, J. Han, Y. H. Huang, Sci. China Mater. 2017, 60, 629.

[9]

T. Jin, P. F. Wang, Q. C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X. Q. Yang, L. Jiao, C. S. Wang, Angew. Chem. Int. Ed. 2020, 59, 14511.

[10]

S. Kang, D. Kim, K. S. Lee, M. S. Kim, A. Jin, J. H. Park, C. Y. Ahn, T. Y. Jeon, Y. H. Jung, S. H. Yu, J. Y. Mun, Y. E. Sung, Adv. Sci. 2020, 7, 2001263.

[11]

W. Zheng, Q. Liu, Z. Y. Wang, Z. L. Wu, S. Gu, L. J. Cao, K. L. Zhang, J. Fransaer, Z. G. Lu, Energy Storage Mater. 2020, 28, 300.

[12]

R. A. House, U. Maitra, M. A. Perez Osorio, J. G. Lozano, L. Jin, J. W. Somerville, L. C. Duda, A. Nag, A. Walters, K. J. Zhou, M. R. Roberts, P. G. Bruce, Nature 2020, 577, 502.

[13]

T. Yuan, S. Li, Y. Sun, J. H. Wang, A. J. Chen, Q. Zheng, Y. Zhang, L. Chen, G. Nam, H. Che, J. Yang, S. Zheng, Z. F. Ma, M. Liu, ACS Nano 2022, 16, 18058.

[14]

X. Liu, G. Zhong, Z. Xiao, B. Zheng, W. Zuo, K. Zhou, H. Liu, Z. Liang, Y. Xiang, Z. Chen, G. F. Ortiz, R. Fu, Y. Yang, Nano Energy 2020, 76, 104997.

[15]

K. Jiang, S. Xu, S. Guo, X. Zhang, X. Zhang, Y. Qiao, T. Fang, P. Wang, P. He, H. Zhou, Nano Energy 2018, 52, 88.

[16]

C. Cheng, H. Hu, C. Yuan, X. Xia, J. Mao, K. Dai, L. Zhang, Energy Storage Mater. 2022, 52, 10.

[17]

Z. Wang, G. Cui, Q. Zheng, X. Ren, Q. Yang, S. Yuan, X. Bao, C. Shu, Y. Zhang, L. Li, Y. S. He, L. Chen, Z. F. Ma, X. Z. Liao, Small 2023, 19, e2206987.

[18]

Y. Shi, S. Li, A. Gao, J. Zheng, Q. Zhang, X. Lu, L. Gu, D. Cao, ACS Appl. Mater. Interfaces 2019, 11, 24122.

[19]

X. L. Li, J. Bao, Z. Shadike, Q. C. Wang, X. Q. Yang, Y. N. Zhou, D. Sun, F. Fang, Angew. Chem. Int. Ed. 2021, 60, 22026.

[20]

C. Ma, J. Alvarado, J. Xu, R. J. Clement, M. Kodur, W. Tong, C. P. Grey, Y. S. Meng, J. Am. Chem. Soc. 2017, 139, 4835.

[21]

N. Li, S. F. Wang, E. Y. Zhao, W. Yin, Z. G. Zhang, K. Wu, J. Xu, Y. Kuroiwa, Z. B. Hu, F. W. Wang, J. K. Zhao, X. L. Xiao, J. Energy Chem. 2022, 68, 564.

[22]

M. Ren, S. Zhao, S. Gao, T. Zhang, M. Hou, W. Zhang, K. Feng, J. Zhong, W. Hua, S. Indris, K. Zhang, J. Chen, F. Li, J. Am. Chem. Soc. 2023, 145, 224.

[23]

L. Wang, T. Liu, T. Wu, J. Lu, Nature 2022, 611, 61.

[24]

X. H. Rong, E. Hu, Y. Lu, F. Meng, C. Zhao, X. Wang, Q. Zhang, X. Yu, L. Gu, Y. S. Hu, H. Li, X. Huang, X. Q. Yang, C. Delmas, L. Q. Chen, Joule 2019, 3, 503.

[25]

S. Chu, C. Zhang, H. Xu, S. Guo, P. Wang, H. Zhou, Angew. Chem. Int. Ed. 2021, 60, 13366.

[26]

Y. Liao, H. Feng, Q. Yang, M. Shen, Y. Jiang, C. Li, C. Zhao, F. Geng, B. Hu, ACS Appl. Mater. Interfaces 2023, 15, 10709.

[27]

X. Cao, H. Li, Y. Qiao, Z. Chang, P. Wang, C. Li, X. Yue, P. He, J. Cabana, H. Zhou, ACS Energy Lett. 2022, 7, 2349.

[28]

B. H. Toby, R. B. Von Dreele, J. Appl. Cryst. 2013, 46, 544.

[29]

C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Božin, J. Bloch, T.h. Proffen, S. J. L. Billinge, J. Phys. Condens. Matter 2007, 19, 335219.

[30]

A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Hausermann, High Press. Res. 1996, 14, 235.

[31]

N. Voronina, N. Yaqoob, H. J. Kim, K. S. Lee, H. D. Lim, H. G. Jung, O. Guillon, P. Kaghazchi, S. T. Myung, Adv. Energy Mater. 2021, 11, 2100901.

[32]

Z. Chen, M. Yang, G. Chen, G. Tang, Z. Huang, M. Chu, R. Qi, S. Li, R. Wang, C. Wang, T. Zhang, J. Zhai, W. Zhao, J. Zhang, J. Chen, L. He, J. Xu, W. Yin, J. Wang, Y. Xiao, Nano Energy 2022, 94, 106958.

[33]

E. Zhao, Z. G. Zhang, X. Li, L. He, X. Yu, H. Li, F. W. Wang, Chinese Phys. B 2020, 29, 18201.

[34]

J. B. Wang, S. L. Dreyer, K. Wang, Z. M. Ding, T. Diemant, G. Karkera, Y. J. Ma, A. Sarkar, B. Zhou, M. V. Gorbunov, A. Omar, D. Mikhailova, V. Presser, M. Fichtner, H. Hahn, T. Brezesinski, B. Breitung, Q. S. Wang, Mater. Futures 2022, 1, 35104.

[35]

Z. Li, Y. Li, M. Zhang, Z. W. Yin, L. Yin, S. Xu, C. Zuo, R. Qi, H. Xue, J. Hu, B. Cao, M. Chu, W. Zhao, Y. Ren, L. Xie, G. Ren, F. Pan, Adv. Energy Mater. 2021, 11, 2101962.

[36]

P. F. Wang, M. Weng, Y. Xiao, Z. Hu, Q. Li, M. Li, Y. D. Wang, X. Chen, X. Yang, Y. Wen, Y. X. Yin, X. Yu, Y. Xiao, J. Zheng, L. J. Wan, F. Pan, Y. G. Guo, Adv. Mater. 2019, 31, e1903483.

[37]

D. Chen, M. A. Mahmoud, J. H. Wang, G. H. Waller, B. Zhao, C. Qu, M. A El-Sayed, M. Liu, Nano Lett. 2019, 19, 2037.

[38]

Y. Qiao, S. Guo, K. Zhu, P. Liu, X. Li, K. Jiang, C. J. Sun, M. Chen, H. Zhou, Energ. Environ. Sci. 2018, 11, 299.

[39]

Y. J. Guo, P. F. Wang, Y. B. Niu, X. D. Zhang, Q. Li, X. Yu, M. Fan, W. P. Chen, Y. Yu, X. Liu, Q. Meng, S. Xin, Y. X. Yin, Y. G. Guo, Nat. Commun. 2021, 12, 5267.

[40]

T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, K. Xu, F. Pan, Nat. Nanotechnol. 2019, 14, 50.

[41]

Y. Xie, H. Wang, G. Xu, J. Wang, H. Sheng, Z. Chen, Y. Ren, C. J. Sun, J. Wen, J. Wang, D. J. Miller, J. Lu, K. Amine, Z. F. Ma, Adv. Energy Mater. 2016, 6, 1601306.

[42]

K. Yang, L. Jia, X. Liu, Z. Wang, Y. Wang, Y. Li, H. Chen, B. Wu, L. Yang, F. Pan, Nano Res. 2020, 13, 412.

[43]

Y. Wen, J. Fan, C. Shi, P. Dai, Y. Hong, R. Wang, L. Wu, Z. Zhou, J. Li, L. Huang, S. G. Sun, Nano Energy 2019, 60, 162.

[44]

B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.

[45]

D. Kwon, S. J. Park, J. Lee, S. Park, S. H. Yu, D. Kim, Adv. Sci. 2023, 10, 2206367.

[46]

H. Ren, L. Zheng, Y. Li, Q. Ni, J. Qian, Y. Li, Q. Li, M. Liu, Y. Bai, S. Weng, X. Wang, F. Wu, C. Wu, Nano Energy 2022, 103, 107765.

[47]

Y. Yang, Y. Feng, Z. Chen, Y. Feng, Q. Huang, C. Ma, Q. Xia, C. Liang, L. Zhou, M. S. Islam, P. Wang, L. Zhou, L. Mai, W. Wei, Nano Energy 2020, 76, 105061.

[48]

S. Sharifi-Asl, V. Yurkiv, A. Gutierrez, M. Cheng, M. Balasubramanian, F. Mashayek, J. Croy, R. Shahbazian-Yassar, Nano Lett. 2020, 20, 1208.

[49]

F. Li, J. Li, F. Zhu, T. Liu, B. Xu, T. H. Kim, M. J. Kramer, C. Ma, L. Zhou, C. W. Nan, Matter 2019, 1, 1001.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/