How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries?

Junwu Sang , Bin Tang , Yong Qiu , Yongzheng Fang , Kecheng Pan , Zhen Zhou

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12670

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12670 DOI: 10.1002/eem2.12670
RESEARCH ARTICLE

How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries?

Author information +
History +
PDF

Abstract

All-solid-state lithium metal batteries (ASSLMBs) with solid electrolytes (SEs) have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety. However, since ASSLMBs lack the wetting properties of liquid electrolytes, they require stacking pressure to prevent contact loss between electrodes and SEs. Though previous studies showed that stacking pressure could impact certain performance aspects, a comprehensive investigation into the effects of stacking pressure has not been conducted. To address this gap, we utilized the Li6PS5Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs. We also developed models to explain the underlying origin of these effects and predict battery performance, such as ionic conductivity and critical current density. Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance, and each step of applying pressure requires a specific pressure value. These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs. Overall, this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.

Keywords

critical current density / solid electrolyte / solid-state lithium metal batteries / stacking pressure

Cite this article

Download citation ▾
Junwu Sang, Bin Tang, Yong Qiu, Yongzheng Fang, Kecheng Pan, Zhen Zhou. How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries?. Energy & Environmental Materials, 2024, 7(4): e12670 DOI:10.1002/eem2.12670

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, Nat. Energy 2020, 5, 259.

[2]

L. Z. Fan, H. He, C. W. Nan, Nat. Rev. Mater. 2021, 6, 1003.

[3]

A. M. Abakumov, S. S. Fedotov, E. V. Antipov, J. M. Tarascon, Nat. Commun. 2020, 11, 4976.

[4]

X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.

[5]

K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. Rupp, Adv. Energy Mater. 2021, 11, 2002689.

[6]

C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, Energy Environ. Sci. 2021, 14, 2577.

[7]

K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong, H. Zhang, S. Zhang, Adv. Mater. 2020, 32, 2000399.

[8]

J. Sang, B. Tang, K. Pan, Y.-B. He, Z. Zhou, Acc. Mater. Res. 2023, 4, 472.

[9]

J. M. Doux, Y. Yang, D. H. Tan, H. Nguyen, E. A. Wu, X. Wang, A. Banerjee, Y. S. Meng, J. Mater. Chem. A 2020, 8, 5049.

[10]

C. Hänsel, D. Kundu, Adv. Mater. Interfaces 2021, 8, 2100206.

[11]

F. Zhang, Y. Guo, L. Zhang, P. Jia, X. Liu, P. Qiu, H. Zhang, J. Huang, eTransportation 2023, 15, 100220.

[12]

Z. Ning, G. Li, D. L. R. Melvin, Y. Chen, J. Bu, D. Spencer-Jolly, J. Liu, B. Hu, X. Gao, J. Perera, C. Gong, S. D. Pu, S. Zhang, B. Liu, G. O. Hartley, A. J. Bodey, R. I. Todd, P. S. Grant, D. E. J. Armstrong, T. J. Marrow, C. W. Monroe, P. G. Bruce, Nature 2023, 618, 287.

[13]

J. Lee, T. Lee, K. Char, K. J. Kim, J. W. Choi, Acc. Chem. Res. 2021, 54, 3390.

[14]

D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 1909, 2022, 13.

[15]

S. Y. Ham, H. Yang, O. Nunez-cuacuas, D. H. Tan, Y. T. Chen, G. Deysher, A. Cronk, P. Ridley, J.-M. Doux, E. A. Wu, Energy Storage Mater. 2023, 55, 455.

[16]

J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105.

[17]

C. Lee, S. Y. Han, J. A. Lewis, P. P. Shetty, D. Yeh, Y. Liu, E. Klein, H. W. Lee, M. T. McDowell, ACS Energy Lett. 2021, 6, 3261.

[18]

F. Zhao, Q. Sun, C. Yu, S. Zhang, K. Adair, S. Wang, Y. Liu, Y. Zhao, J. Liang, C. Wang, ACS Energy Lett. 2020, 5, 1035.

[19]

Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2009925.

[20]

J. M. Doux, H. Nguyen, D. H. Tan, A. Banerjee, X. Wang, E. A. Wu, C. Jo, H. Yang, Y. S. Meng, Adv. Energy Mater. 2020, 10, 1903253.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/