Triphenylphosphine-Assisted Exsolution Engineering on Ruddlesden–Popper Perovskites for Promoting Oxygen Evolution

Juan Bai , Jing Shang , Jun Mei , Dongchen Qi , Ting Liao , Ziqi Sun

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12668

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12668 DOI: 10.1002/eem2.12668
RESEARCH ARTICLE

Triphenylphosphine-Assisted Exsolution Engineering on Ruddlesden–Popper Perovskites for Promoting Oxygen Evolution

Author information +
History +
PDF

Abstract

Metal exsolution engineering has been regarded as a promising strategy for activating intrinsically inert perovskite oxide catalysts toward efficient oxygen evolution reaction. Traditional metal exsolution processes on perovskites are often achieved by using the reducing hydrogen gas; however, this is not effective for the relatively stable phase, such as Ruddlesden–Popper perovskite oxides. To address this issue, triphenylphosphine is proposed to be a reduction promotor for accelerating the reduction and migration of the target metal atoms, aiming to achieve the effective exsolution of metallic species from Ruddlesden–Popper-type parent perovskites. Upon oxygen evolution reaction, these exsolved metallic aggregates are reconstructed into oxyhydroxides as the real active centers. After further modification by low-percentage iridium oxide nanoclusters, the optimal catalyst delivered an overpotential as low as 305 mV for generating the density of 10 mA cm-2, outperforming these reported noble metal-containing perovskite-based alkaline oxygen evolution reaction electrocatalysts. This work provides a potential approach to activate catalytically inert oxides through promoting surface metal exsolution and explores a novel class of Ruddlesden–Popper-type oxides for electrocatalytic applications.

Keywords

exsolution / oxygen evolution / perovskite / reconstruction / Ruddlesden–Popper

Cite this article

Download citation ▾
Juan Bai, Jing Shang, Jun Mei, Dongchen Qi, Ting Liao, Ziqi Sun. Triphenylphosphine-Assisted Exsolution Engineering on Ruddlesden–Popper Perovskites for Promoting Oxygen Evolution. Energy & Environmental Materials, 2024, 7(4): e12668 DOI:10.1002/eem2.12668

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003.

[2]

J. Mei, J. Bai, G. A. Ayoko, H. Peng, T. Liao, Z. Sun, Adv. Energy Sustain. Res. 2021, 2, 2100057.

[3]

J. Mei, T. Liao, J. Liang, Y. Qiao, S. X. Dou, Z. Sun, Adv. Energy Mater. 2020, 10, 1901997.

[4]

X. Xu, C. Su, W. Zhou, Y. Zhu, Y. Chen, Z. Shao, Adv. Sci. 2015, 3, 1500187.

[5]

Y. Sun, R. Li, X. Chen, J. Wu, Y. Xie, X. Wang, K. Ma, L. Wang, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Adv. Energy Mater. 2021, 11, 2003755.

[6]

Y. Liu, H. Huang, L. Xue, J. Sun, X. Wang, P. Xiong, J. Zhu, Nanoscale 2021, 13, 19840.

[7]

J. T. S Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichristodoulou, C. Graves, M. B. Mogensen, Nat. Energy 2016, 1, 15014.

[8]

J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383.

[9]

Y. Chen, Y. Sun, M. Wang, J. Wang, H. Li, S. Xi, C. Wei, P. Xi, G. E. Sterbinsky, J. W. Freeland, A. C. Fisher, J. W. Ager, Z. Feng, Z. J. Xu, Sci. Adv. 2021, 7, eabk1788.

[10]

C. E. Beall, E. Fabbri, T. J. Schmidt, ACS Catal. 2021, 11, 3094.

[11]

Y. Wei, Z. Weng, L. Guo, L. An, J. Yin, S. Sun, P. Da, R. Wang, P. Xi, C. H. Yan, Small Methods 2021, 5, 2100012.

[12]

D. Liu, P. Zhou, H. Bai, H. Ai, X. Du, M. Chen, D. Liu, W. F. Ip, K. H. Lo, C. T. Kwok, S. Chen, S. Wang, G. Xing, X. Wang, H. Pan, Small 2021, 17, 2101605.

[13]

J. W. Zhao, Z. X. Shi, C. F. Li, Q. Ren, G. R. Li, ACS Mater. Lett. 2021, 3, 721.

[14]

S. Joo, O. Kwon, K. Kim, S. Kim, H. Kim, J. Shin, H. Y. Jeong, S. Sengodan, J. W. Han, G. Kim, Nat. Commun. 2019, 10, 697.

[15]

R. Huang, C. Lim, M. G. Jang, J. Y. Hwang, J. W. Han, J. Catal. 2021, 400, 148.

[16]

B. Zhang, M. Zhu, M. Gao, X. Xi, N. Duan, Nat. Commun. 2022, 13, 4618.

[17]

A. I. Tsiotsias, B. Ehrhardt, B. Rudolph, L. Nodari, S. Kim, W. Jung, N. D. Charisiou, M. A. Goula, S. Mascotto, ACS Nano 2022, 16, 8904.

[18]

H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto, N. Ta, C. Zeng, G. Wang, X. Bao, Angew. Chem Int. Ed. Engl. 2020, 59, 15968.

[19]

S. Liu, Q. Liu, J. L. Luo, J. Mater. Chem. A 2016, 4, 17521.

[20]

S. Park, Y. Kim, H. Han, Y. S. Chung, W. Yoon, J. Choi, W. B. Kim, Appl. Catal. B Environ. 2019, 248, 147.

[21]

Y. Song, H. Li, M. Xu, G. Yang, W. Wang, R. Ran, W. Zhou, Z. Shao, Small 2020, 16, 2001859.

[22]

T. Tan, Z. Wang, M. Qin, W. Zhong, J. Hu, C. Yang, M. Liu, Adv. Funct. Mater. 2022, 32, 2202878.

[23]

L. Zhang, F. Yao, J. Meng, W. Zhang, H. Wang, X. Liu, J. Meng, H. Zhang, J. Mater. Chem. A 2019, 7, 18558.

[24]

R. P. Forslund, C. T. Alexander, A. M. Abakumov, K. P. Johnston, K. J. Stevenson, ACS Catal. 2019, 9, 2664.

[25]

S. R. Choi, J. I. Lee, H. Park, S. W. Lee, D. Y. Kim, W. Y. An, J. H. J. Kim, J. H. J. Kim, H. S. Cho, J. Y. Park, Chem. Eng. J. 2021, 409, 128226.

[26]

S. Liu, C. Sun, J. Chen, J. Xiao, J. L. Luo, ACS Catal. 2020, 10, 13437.

[27]

H. Zhang, S. Ni, Y. Mi, X. Xu, J. Catal. 2018, 359, 112.

[28]

N. Han, S. Feng, W. Guo, O. M. Mora, X. Zhao, W. Zhang, S. Xie, Z. Zhou, Z. Liu, Q. Liu, K. Wan, X. Zhang, J. Fransaer, SusMat 2022, 2, 456.

[29]

Y. Zhu, H. A. Tahini, Z. Hu, Z. G. Chen, W. Zhou, A. C. Komarek, Q. Lin, H. J. Lin, C. Te Chen, Y. Zhong, M. T. Fernández-Díaz, S. C. Smith, H. Wang, M. Liu, Z. Shao, Adv. Mater. 2020, 32, 1905025.

[30]

Y. Zhu, Q. Lin, Z. Hu, Y. Chen, Y. Yin, H. A. Tahini, H. J. Lin, C. Te Chen, X. Zhang, Z. Shao, H. Wang, Small 2020, 16, 2001204.

[31]

C. Jia, X. Xiang, J. Zhang, Z. He, Z. Gong, H. Chen, N. Zhang, X. Wang, S. Zhao, Y. Chen, Adv. Funct. Mater. 2023, 33, 2301981.

[32]

Y. Zhu, H. A. Tahini, Z. Hu, J. Dai, Y. Chen, H. Sun, W. Zhou, M. Liu, S. C. Smith, H. Wang, Z. Shao, Nat. Commun. 2019, 10, 149.

[33]

R. P. Forslund, W. G. Hardin, X. Rong, A. M. Abakumov, D. Filimonov, C. T. Alexander, J. T. Mefford, H. Iyer, A. M. Kolpak, K. P. Johnston, K. J. Stevenson, Nat. Commun. 2018, 9, 3150.

[34]

J. Zhu, Y. Wang, A. Zhi, Z. Chen, L. Shi, Z. Zhang, Y. Zhang, Y. Zhu, X. Qiu, X. Tian, X. Bai, Y. Zhang, Y. Zhu, Angew. Chem. Int. Ed. Engl. 2022, 61, e202111670.

[35]

Y. Zhu, H. A. Tahini, Z. Hu, Y. Yin, Q. Lin, H. Sun, Y. Zhong, Y. Chen, F. Zhang, H.-J. H. Lin, C.-T. C. Chen, W. Zhou, X. Zhang, S. C. Smith, Z. Shao, H. Wang, EcoMat 2020, 2, e12021.

[36]

S. Park, H. Han, W. Yoon, J. Choi, Y. Kim, H. Kim, W. B. Kim, ACS Sustain. Chem. Eng. 2020, 8, 6564.

[37]

L. Li, J. Zhou, Z. Hu, S. Choi, G. Kim, J. Q. Wang, L. Zhang, J. Phys. Chem. Lett. 2021, 12, 11503.

[38]

H. Zhang, K. Xu, F. He, Y. Zhou, K. Sasaki, B. Zhao, Y. M. Choi, M. Liu, Y. Chen, Adv. Energy Mater. 2022, 12, 2200761.

[39]

M. Giménez-Marqués, E. Bellido, T. Berthelot, T. Simón-Yarza, T. Hidalgo, R. Simón-Vázquez, Á. González-Fernández, J. Avila, M. C. Asensio, R. Gref, P. Couvreur, C. Serre, P. Horcajada, Small 2018, 14, 1801900.

[40]

T. Park, S. Sambasivan, D. A. Fischer, W. Yoon, J. A. Misewich, S. S. Wong, J. Phys. Chem. C 2008, 112, 10359.

[41]

A. M. Hibberd, H. Q. Doan, E. N. Glass, F. M. F. De Groot, C. L. Hill, T. Cuk, J. Phys. Chem. C 2015, 119, 4173.

[42]

V. V. Mesilov, V. R. Galakhov, A. F. Gubkin, E. A. Sherstobitova, G. S. Zakharova, M. A. Uimin, A. Y. Yermakov, K. O. Kvashnina, D. A. Smirnov, J. Phys. Chem. C 2017, 121, 24235.

[43]

H. Liu, J. Guo, Y. Yin, A. Augustsson, C. Dong, J. Nordgren, C. Chang, P. Alivisatos, G. Thornton, D. F. Ogletree, F. G. Requejo, F. De Groot, M. Salmeron, Nano Lett. 2007, 7, 1919.

[44]

H. Gu, J. Xia, C. Liang, Y. Chen, W. Huang, G. Xing, Nat. Rev. Mater. 2023, 8, 533.

[45]

Z. Xu, D. Lu, F. Liu, H. Lai, X. Wan, X. Zhang, Y. Liu, Y. Chen, ACS Nano 2020, 14, 4871.

[46]

Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060.

[47]

Z. P. Wu, X. F. Lu, S. Q. Zang, X. W. Lou, Adv. Funct. Mater. 2020, 30, 1910274.

[48]

Y. Zhu, W. Zhou, Z.-G. Chen, Y. Chen, C. Su, M. O. Tadé, Z. Shao, Angew. Chem. Int. Ed. Engl. 2015, 54, 3897.

[49]

S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, J. Zeng, Nat. Commun. 2016, 7, 11510.

[50]

B. Bao, Y. Liu, M. Sun, B. Huang, Y. Hu, P. Da, D. Ji, P. Xi, C. H. Yan, Small 2022, 18, 2201131.

[51]

J. Y. C Chen, L. Dang, H. Liang, W. Bi, J. B. Gerken, S. Jin, E. E. Alp, S. S. Stahl, J. Am. Chem. Soc. 2015, 137, 15090.

[52]

J. Mei, Q. Zhang, H. Peng, T. Liao, Z. Sun, J. Mater. Sci. Technol. 2022, 111, 181.

[53]

X. Du, M. Chen, S. Shen, P. Zhou, K. H. Lo, H. Pan, Mater. Today Energy 2022, 27, 101046.

[54]

Y. Huan, S. Chen, R. Zeng, T. Wei, D. Dong, X. Hu, Y. Huang, Adv. Energy Mater. 2019, 9, 1901573.

[55]

D. Mierwaldt, V. Roddatis, M. Risch, J. Scholz, J. Geppert, M. E. Abrishami, C. Jooss, Adv. Sustain. Syst. 2017, 1, 1700109.

[56]

A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457.

[57]

J. Bai, J. Mei, T. Liao, Q. Sun, Z. Chen, Z. Sun, Adv. Energy Mater. 2022, 12, 2103247.

[58]

J. Mei, J. Shang, T. He, D. Qi, L. Kou, T. Liao, A. Du, Z. Sun, Adv. Energy Mater. 2022, 12, 2201141.

[59]

Y. Wei, Y. Zheng, Y. Hu, B. Huang, M. Sun, P. Da, P. Xi, C. H. Yan, ACS Appl. Mater. Interfaces 2022, 14, 25638.

[60]

J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou, W. Sun, Angew. Chem. Int. Ed. Engl. 2019, 58, 12540.

[61]

J. Mei, T. He, J. Bai, D. Qi, A. Du, T. Liao, G. A. Ayoko, Y. Yamauchi, L. Sun, Z. Sun, Adv. Mater. 2021, 33, 2104638.

[62]

M. Retuerto, F. Calle-Vallejo, L. Pascual, G. Lumbeeck, M. T Fernandez-Diaz, M. Croft, J. Gopalakrishnan, M. A. Peña, J. Hadermann, M. Greenblatt, S. Rojas, ACS Appl. Mater. Interfaces 2019, 11, 21454.

[63]

S. G. Chandrappa, P. Moni, D. Chen, G. Karkera, K. R. Prakasha, R. A. Caruso, A. S. Prakash, J. Mater. Chem. A 2020, 8, 20612.

[64]

X. Wang, J. Sunarso, Q. Lu, Z. Zhou, J. Dai, D. Guan, W. Zhou, Z. Shao, Adv. Energy Mater. 2020, 10, 1903271.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/