Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation

Rui Wang , Jinshuo Deng , Ping Wu , Qianli Ma , Xiangting Dong , Wensheng Yu , Guixia Liu , Jinxian Wang , Lei Liu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12667

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12667 DOI: 10.1002/eem2.12667
RESEARCH ARTICLE

Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation

Author information +
History +
PDF

Abstract

Solar steam generation is a promising water purification technology due to its low-cost and environmentally friendly applications in water purification and desalination. However, hydrophilic or hydrophobic materials alone are insufficient in achieving necessary characteristics for constructing high-quality solar steam generators with good comprehensive properties. Herein, novel hydrophile/hydrophobe amphipathic Janus nanofibers aerogel is designed and used as a host material for preparing solar steam generators. The product consists of an internal cubic aerogel and an external layer of photothermal materials. The internal aerogel is composed of electrospun amphipathic Janus nanofibers. Owing to the unique composition and structure, the prepared solar steam generator integrates the features of high water evaporation rate (2.944 kg m-2 h-1 under 1 kW m-2 irradiation), self-floating, salt-resisting, and fast performance recovery after flipping. Moreover, the product also exhibits excellent properties on desalination and removal of organic pollutants. Compared with traditional hydrophilic aerogel host material, the amphipathic Janus nanofibers aerogel brings much higher water evaporation rate and salt resistance.

Keywords

aerogels / electrospinning / photothermal materials / solar desalination / solar steam generation

Cite this article

Download citation ▾
Rui Wang, Jinshuo Deng, Ping Wu, Qianli Ma, Xiangting Dong, Wensheng Yu, Guixia Liu, Jinxian Wang, Lei Liu. Amphipathic Janus Nanofibers Aerogel for Efficient Solar Steam Generation. Energy & Environmental Materials, 2024, 7(4): e12667 DOI:10.1002/eem2.12667

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Wu, Y. Wang, P. Wu, J. Zhao, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 2021, 31, 2102618.

[2]

Y. Zhang, Y. Wang, B. Yu, K. Yin, Z. Zhang, Adv. Mater. 2022, 34, 2200108.

[3]

N. Liu, L. Hao, B. Zhang, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2022, 5, 617.

[4]

M. Jin, Z. Wu, F. Guan, D. Zhang, B. Wang, N. Sheng, X. Qu, L. Deng, S. Chen, Y. Chen, H. Wang, ACS Appl. Mater. Interfaces 2022, 14, 12284.

[5]

X. Wang, K. Liu, Z. Wang, L. Heng, L. Jiang, J. Mater. Chem. A 2022, 10, 3436.

[6]

H. Bai, N. Liu, L. Hao, P. He, C. Ma, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2022, 5, 1204.

[7]

H. Zhang, X. Shen, E. Kim, M. Wang, J. H. Lee, H. Chen, G. Zhang, J. K. Kim, Adv. Funct. Mater. 2022, 32, 2111794.

[8]

J. Yuan, X. Lei, C. Yi, H. Jiang, F. Liu, G. J. Cheng, Chem. Eng. J. 2022, 430, 132765.

[9]

I. Ibrahim, S. M. Hossain, D. H. Seo, A. McDonagh, T. Foster, H. K. Shon, L. Tijing, Sep. Purif. Technol. 2022, 293, 121054.

[10]

R. Wang, J. Deng, P. Wu, Q. Ma, X. Dong, W. Yu, G. Liu, J. Wang, L. Liu, J. Environ. Chem. Eng. 2022, 10, 108173.

[11]

B. Xiao, W. Zhou, F. Yu, J. Wang, X. Xiong, G. Liu, Y. Xia, X. Wang, Environ. Prog. Sustain. Energy 2022, 42, e13944.

[12]

R. Zhang, B. Xiang, Y. Wang, S. Tang, X. Meng, Mater. Horiz. 2022, 9, 1232.

[13]

X. Zhang, L. Ren, J. Xu, B. Shang, X. Liu, W. Xu, Small 2022, 18, 2105198.

[14]

Y. Wang, H. Ma, J. Yu, J. Li, N. Xu, J. Zhu, L. Zhou, Adv. Opt. Mater. 2023, 11, 2201907.

[15]

Y. Dong, Y. Tan, K. Wang, Y. Cai, J. Li, C. Sonne, C. Li, Water Res. 2022, 223, 119011.

[16]

X. Zhang, M. Pi, H. Lu, M. Li, X. Wang, Z. Wang, R. Ran, Sol. Energy Mater. Sol. Cells 2022, 242, 111742.

[17]

Y. Wang, X. Wu, P. Wu, J. Zhao, X. Yang, G. Owens, H. Xu, Sci. Bull. 2021, 66, 2479.

[18]

X. Hu, J. Zhu, Adv. Funct. Mater. 2020, 30, 1907234.

[19]

X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao, X. Zou, Y. Sun, Y. Dai, Adv. Fiber Mater. 2020, 2, 93.

[20]

Y. Fu, G. Wang, X. Ming, X. Liu, B. Hou, T. Mei, J. Li, J. Wang, X. Wang, Carbon 2018, 130, 250.

[21]

Z. Qin, S. Zhao, X. Fang, B. Zhao, J. Deng, K. Pan, Adv. Funct. Mater. 2022, 32, 2109240.

[22]

T. Pirzada, Z. Ashrafi, W. Xie, S. A. Khan, Adv. Funct. Mater. 2020, 30, 1907359.

[23]

M. Dilamian, M. Joghataei, Z. Ashrafi, C. Bohr, S. Mathur, H. Maleki, Appl. Mater. Today 2021, 22, 100964.

[24]

F. Meng, H. Wang, Z. Chen, T. Li, C. Li, Y. Xuan, Z. Zhou, Nano Res. 2018, 11, 2847.

[25]

R. Liu, X. Dong, S. Xie, T. Jia, Y. Xue, J. Liu, W. Jing, A. Guo, Chem. Eng. J. 2019, 360, 464.

[26]

Z. Yuan, Y. Ren, M. Shafiq, Y. Chen, H. Tang, B. Li, M. El-Newehy, H. El-Hamshary, Y. Morsi, H. Zheng, X. Mo, Macromol. Biosci. 2022, 22, 2100342.

[27]

J. Qiu, P. Fan, C. Yue, F. Liu, A. Li, J. Mater. Chem. A 2019, 7, 7053.

[28]

Y. Si, Q. Fu, X. Wang, J. Zhu, J. Yu, G. Sun, B. Ding, ACS Nano 2015, 9, 3791.

[29]

C. Li, S. Cao, J. Lutzki, J. Yang, T. Konegger, F. Kleitz, A. Thomas, J. Am. Chem. Soc. 2022, 144, 3083.

[30]

S. Sun, Y. Wang, B. Sun, F. Zhang, C. Shen, ACS Appl. Mater. Interfaces 2021, 13, 24945.

[31]

Q. Zhang, G. Yi, Z. Fu, H. Yu, X. Quan, ACS Nano 2019, 13, 13196.

[32]

W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Energy Mater. 2018, 8, 1702884.

[33]

H. Jian, Q. Qi, W. Wang, D. Yu, Sep. Purif. Technol. 2021, 264, 118459.

[34]

B. Sun, Y. Han, S. Li, P. Xu, X. Han, A. Nafady, S. Ma, Y. Du, J. Mater. Chem. A 2021, 9, 23140.

[35]

B. Wen, X. Zhang, Y. Yan, Y. Huang, S. Lin, Y. Zhu, Z. Wang, B. Zhou, S. Yang, J. Liu, Desalination 2021, 516, 115228.

[36]

Q. Zhou, H. Li, D. Li, B. Wang, H. Wang, J. Bai, S. Ma, G. Wang, J. Colloid Interface Sci. 2021, 592, 77.

[37]

H. Yao, P. Zhang, C. Wang, Q. Liao, X. Hao, Y. Huang, M. Zhang, X. Wang, T. Lin, H. Cheng, J. Yuan, L. Qu, Energy Environ. Sci. 2021, 14, 5330.

[38]

Q. Ma, J. Wang, X. Dong, W. Yu, G. Liu, Adv. Funct. Mater. 2015, 25, 2436.

[39]

P. Wu, Q. Ma, W. Yu, J. Wang, G. Liu, X. Dong, J. Mater. Chem. C 2021, 9, 7615.

[40]

D. G. Yu, J. J. Li, M. Zhang, G. R. Williams, Chem. Commun. 2017, 53, 4542.

[41]

X. Mu, Y. Gu, P. Wang, J. Shi, A. Wei, Y. Tian, J. Zhou, Y. Chen, J. Zhang, Z. Sun, Solar RRL 2020, 4, 2000341.

[42]

T. Nakaoki, H. Yamashita, J. Mol. Struct. 2008, 875, 282.

[43]

K. Kudo, J. Ishida, G. Syuu, Y. Sekine, T. Ikeda-Fukazawa, J. Chem. Phys. 2014, 140, 158.

[44]

W. B. Monosmith, G. E. Walrafen, J. Chem. Phys. 1984, 81, 669.

[45]

X. Ouyang, P. Wu, J. Deng, Q. Ma, X. Dong, W. Yu, G. Liu, J. Wang, L. Liu, Sep. Purif. Technol. 2022, 297, 121526.

[46]

H. Yu, D. Wang, H. Jin, P. Wu, X. Wu, D. Chu, Y. Liu, X. Yang, H. Xu, Adv. Funct. Mater. 2023, 33, 2214828.

[47]

L. Zang, C. Finnerty, S. Zheng, K. Conway, L. Sun, J. Ma, B. Mi, Water Res. 2021, 198, 117135.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/