High-Performance Inverted Perovskite Solar Cells with Sol–Gel-Processed Sliver-Doped NiOX Hole Transporting Layer

Haibin Wang , Zhiyin Qin , XinJian Li , Chun Zhao , Chao Liang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12666

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12666 DOI: 10.1002/eem2.12666
RESEARCH ARTICLE

High-Performance Inverted Perovskite Solar Cells with Sol–Gel-Processed Sliver-Doped NiOX Hole Transporting Layer

Author information +
History +
PDF

Abstract

Nickel oxide (NiOX) has been established as a highly efficient and stable hole-transporting layer (HTL) in perovskite solar cells (PSCs). However, existing deposition methods for NiOX have been restricted by high-vacuum processes and fail to address the energy level mismatch at the NiOX/perovskite interface, which has impeded the development of PSCs. Accordingly, we explored the application of NiOX as a hybrid HTL through a sol–gel process, where a NiOX film was pre-doped with Ag ions, forming a p/p+ homojunction in the NiOX-based inverted PSCs. This innovative approach offers two synergistic advantages, including the enlargement of the built-in electric field for facilitating charge separation, optimizing energy level alignment, and charge transfer efficiency at the interface between the perovskite and HTL. Incorporating this hybrid HTL featuring the p/p+ homojunction in the inverted PSCs resulted in a high-power conversion efficiency (PCE) of up to 19.25%, significantly narrowing the efficiency gap compared to traditional n-i-p devices. Furthermore, this innovative strategy for the HTL enhanced the environmental stability to 30 days, maintaining 90% of the initial efficiency.

Keywords

Ag-NiO X/NiO X / hole transporting layer / inverted perovskite solar cells

Cite this article

Download citation ▾
Haibin Wang, Zhiyin Qin, XinJian Li, Chun Zhao, Chao Liang. High-Performance Inverted Perovskite Solar Cells with Sol–Gel-Processed Sliver-Doped NiOX Hole Transporting Layer. Energy & Environmental Materials, 2024, 7(4): e12666 DOI:10.1002/eem2.12666

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Guo, J. Ma, H. Lei, F. Yao, B. Li, L. Xiong, G. Fang, J. Mater. Chem. A 2018, 6, 5919.

[2]

G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. I. Kim, L. Pyeon, J. Lee, T. Park, Energy Environ. Sci. 2016, 9, 2326.

[3]

S. Park, J. H. Heo, C. H. Cheon, H. Kim, S. H. Im, H. J. Son, J. Mater. Chem. A 2015, 3, 24215.

[4]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.

[5]

C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, S. Zuo, Y. Hu, X. Gao, W. Hui, Nat. Energy 2021, 6, 38.

[6]

W. Chen, B. Han, Q. Hu, M. Gu, Y. Zhu, W. Yang, Y. Zhou, D. Luo, F.-Z. Liu, R. Cheng, Sci. Bull. 2021, 66, 991.

[7]

M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science 2022, 375, 302.

[8]

Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. J. N. Hautzinger, Nature 2022, 611, 278.

[9]

Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long, Z. J. S. Zhu, Science 2022, 376, 416.

[10]

H. L. Hsu, B. H. Jiang, J. M. Lan, C. H. Wu, R. J. Jeng, C. P. Chen, Adv. Electron. Mater. 2021, 7, 2000870.

[11]

S. Zhang, K. Guo, L. Sun, Y. Ni, L. Liu, W. Xu, L. Yang, W. Xu, Adv. Mater. 2021, 33, 2007350.

[12]

M. Kaltenbrunner, G. Adam, E. D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, Nat. Mater. 2015, 14, 1032.

[13]

Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, Energy Environ. Sci. 2014, 7, 1454.

[14]

C. Liang, Z. Wu, P. Li, J. Fan, Y. Zhang, G. Shao, Appl. Surf. Sci. 2017, 391, 337.

[15]

T. Leijtens, J. Lim, J. Teuscher, T. Park, H. J. Snaith, Adv. Mater. 2013, 25, 3227.

[16]

Y. Jiang, C. Li, H. Liu, R. Qin, H. Ma, J. Mater. Chem. A 2016, 4, 9958.

[17]

R. Zhang, H. Ling, X. Lu, J. Xia, Sol. Energy 2019, 186, 398.

[18]

P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao, Y. Song, Adv. Mater. 2018, 30, 1805323.

[19]

H. Wang, C. Zhao, L. Yin, X. Li, X. Tu, E. G. Lim, Y. Liu, C. Z. Zhao, Appl. Surf. Sci. 2021, 563, 150298.

[20]

G. Kim, N. Kwon, D. Lee, M. Kim, M. Kim, Y. Lee, W. Kim, D. Hyeon, B. Kim, M. S. Jeong, ACS Appl. Mater. Interfaces 2022, 14, 5203.

[21]

I. Qasim, O. Ahmad, Z. ul Abdin, A. Rashid, M. F. Nasir, M. I. Malik, M. Rashid, S. M. Hasnain, Sol. Energy 2022, 237, 52.

[22]

Z. Qirong, Z. Bao, H. Yongmao, L. Liang, D. Zhuoqi, X. Zaixin, Y. Xiaobo, Mater. Res. Express 2022, 9, 36401.

[23]

S. Uthayaraj, D. Karunarathne, G. Kumara, T. Murugathas, S. Rasalingam, R. Rajapakse, P. Ravirajan, D. Velauthapillai, Materials 2019, 12, 2037.

[24]

Y. Ma, Y. Zhang, H. Zhang, H. Lv, R. Hu, W. Liu, S. Wang, M. Jiang, L. Chu, J. Zhang, Appl. Surf. Sci. 2021, 547, 149117.

[25]

M. Makenali, I. Kazeminezhad, V. Ahmadi, F. A. Roghabadi, J. Mater. Sci. Mater. Electron. 2021, 32, 2312.

[26]

D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl, A. Yakusheva, L. Luchnikov, D. Podgorny, P. Gostischev, S. Didenko, Nano Energy 2021, 82, 105771.

[27]

M. I. Haider, A. Fakharuddin, S. Ahmed, M. Sultan, L. Schmidt-Mende, Sol. Energy 2022, 233, 326.

[28]

J. Zhang, J. Long, Z. Huang, J. Yang, X. Li, R. Dai, W. Sheng, L. Tan, Y. Chen, Chem. Eng. J. 2021, 426, 131357.

[29]

F. Cao, F. Cheng, X. Huang, X. Dai, Z. Tang, S. Nie, J. Yin, J. Li, N. Zheng, B. Wu, Adv. Funct. Mater. 2022, 32, 2201423.

[30]

M. Li, H. Li, Q. Zhuang, D. He, B. Liu, C. Chen, B. Zhang, T. Pauporté, Z. Zang, J. Chen, Angew. Chem. Int. Ed. 2022, 61, e202206914.

[31]

S. Zhang, H. Wang, X. Duan, L. Rao, C. Gong, B. Fan, Z. Xing, X. Meng, B. Xie, X. Hu, Adv. Funct. Mater. 2021, 31, 2106495.

[32]

B. Parida, S. Yoon, J. Ryu, S. Hayase, S. M. Jeong, D.-W. Kang, ACS Appl. Mater. Interfaces 2020, 12, 22958.

[33]

W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Adv. Energy Mater. 2018, 8, 1703519.

[34]

W. Nie, H. Tsai, J. C. Blancon, F. Liu, C. C. Stoumpos, B. Traore, M. Kepenekian, O. Durand, C. Katan, S. Tretiak, Adv. Mater. 2018, 30, 1703879.

[35]

Y. Guo, J. Ma, H. Wang, F. Ye, L. Xiong, H. Lei, Z. Tan, Adv. Mater. Interfaces 2021, 8, 2100920.

[36]

Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, F. Li, Appl. Surf. Sci. 2018, 427, 782.

[37]

J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger, A. K. Y. Jen, Adv. Mater. 2015, 27, 695.

[38]

J. W. Jung, C. C. Chueh, A. K. Y. Jen, Adv. Mater. 2015, 27, 7874.

[39]

J. Song, L. Zhao, S. Huang, X. Yan, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, H. Li, G. Li, ChemSusChem 2021, 14, 1396.

[40]

Q. He, K. Yao, X. Wang, X. Xia, S. Leng, F. Li, ACS Appl. Mater. Interfaces 2017, 9, 41887.

[41]

W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurišić, W. K. Chan, Z. B. He, Adv. Energy Mater. 2017, 7, 1700722.

[42]

Y. Xie, K. Lu, J. Duan, Y. Jiang, L. Hu, T. Liu, Y. Zhou, B. Hu, ACS Appl. Mater. Interfaces 2018, 10, 14153.

[43]

X. Xia, Y. Jiang, Q. Wan, X. Wang, L. Wang, F. Li, ACS Appl. Mater. Interfaces 2018, 10, 44501.

[44]

M.-H. Liu, Z.-J. Zhou, P.-P. Zhang, Q.-W. Tian, W.-H. Zhou, D.-X. Kou, S.-X. Wu, Opt. Express 2016, 24, A1349.

[45]

L. Xu, X. Chen, J. Jin, W. Liu, B. Dong, X. Bai, H. Song, P. Reiss, Nano Energy 2019, 63, 103860.

[46]

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, Science 2015, 350, 944.

[47]

X. Yin, Y. Guo, H. Xie, W. Que, L. B. Kong, Solar Rrl 2019, 3, 1900001.

[48]

W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H. W. Tam, G. Wang, A. B. Djurišić, Adv. Mater. 2018, 30, 1800515.

[49]

X. Li, X. Wu, B. Li, Z. Cen, Y. Shang, W. Lian, R. Cao, L. Jia, Z. Li, D. Gao, Energy Environ. Sci. 2022, 15, 4813.

[50]

Z. Yang, A. Rajagopal, C. C. Chueh, S. B. Jo, B. Liu, T. Zhao, A. K. Y. Jen, Adv. Mater. 2016, 28, 8990.

[51]

X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, B. Cao, ACS Appl. Energy Mater. 2018, 1, 3947.

[52]

S. Teo, Z. Guo, Z. Xu, C. Zhang, Y. Kamata, S. Hayase, T. Ma, ChemSusChem 2019, 12, 518.

[53]

Z. Hu, D. Chen, P. Yang, L. Yang, L. Qin, Y. Huang, X. Zhao, Appl. Surf. Sci. 2018, 441, 258.

[54]

L. Zhao, X. Sun, Q. Yao, S. Huang, L. Zhu, J. Song, Y. Zhao, Y. Qiang, Adv. Mater. Interfaces 2022, 9, 2101562.

[55]

P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, G. Shao, ACS Appl. Mater. Interfaces 2016, 8, 32574.

[56]

R. D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751.

[57]

C. Liang, G. Xing, Energy Environ. Mater. 2021, 4, 500.

[58]

C. Liang, P. Li, Y. Zhang, H. Gu, Q. Cai, X. Liu, J. Wang, H. Wen, G. Shao, J. Power Sources 2017, 372, 235.

[59]

J. Zheng, L. Hu, J. S. Yun, M. Zhang, C. F. J. Lau, J. Bing, X. Deng, Q. Ma, Y. Cho, W. Fu, ACS Appl. Energy Mater. 2018, 1, 561.

[60]

S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, H. Shin, Nanoscale 2016, 8, 11403.

[61]

J. R. Manders, S. W. Tsang, M. J. Hartel, T. H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, F. So, Adv. Funct. Mater. 2013, 23, 2993.

[62]

C.-C. Wu, C.-F. Yang, Sol. Energy Mater. Sol. Cells 2015, 132, 492.

[63]

G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H. S. Kwok, Adv. Sci. 2017, 4, 1700463.

[64]

P. Li, C. Liang, X. L. Liu, F. Li, Y. Zhang, X. T. Liu, H. Gu, X. Hu, G. Xing, X. Tao, Adv. Mater. 2019, 31, 1901966.

[65]

F. Wang, Y. Zhang, M. Yang, D. Han, L. Yang, L. Fan, Y. Sui, Y. Sun, X. Liu, X. Meng, Adv. Funct. Mater. 2021, 31, 2008052.

[66]

Z. Liu, L. Qiu, L. K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D.-Y. Son, Nat. Energy 2020, 5, 596.

[67]

P. Li, L. Yan, Q. Cao, C. Liang, H. Zhu, S. Peng, Y. Yang, Y. Liang, R. Zhao, S. Zang, Angew. Chem. Int. Ed. 2023, 62, e202217910.

[68]

W. Chen, Y. Zhou, G. Chen, Y. Wu, B. Tu, F. Z. Liu, L. Huang, A. M. C. Ng, A. B. Djurišić, Z. He, Adv. Energy Mater. 2019, 9, 1803872.

[69]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.

[70]

X. Zhu, Z. Xu, S. Zuo, J. Feng, Z. Wang, X. Zhang, K. Zhao, J. Zhang, H. Liu, S. Priya, Energy Environ. Sci. 2018, 11, 3349.

[71]

B. Tu, Y. Wang, W. Chen, B. Liu, X. Feng, Y. Zhu, K. Yang, Z. Zhang, Y. Shi, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 48556.

[72]

X. Yin, J. Zhai, P. Du, N. Li, L. Song, J. Xiong, F. Ko, ChemSusChem 2020, 13, 1006.

[73]

Z. Yin, Q. Zheng, S.-C. Chen, D. Cai, ACS Appl. Mater. Interfaces 2013, 5, 9015.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/