Realizing High Thermoelectric Performance in n-Type Se-Free Bi2Te3 Materials by Spontaneous Incorporation of FeTe2 Nanoinclusions

Jamil Ur Rahman , Woo Hyun Nam , Yong-Jae Jung , Jong Ho Won , Jong-Min Oh , Nguyen Van Du , Gul Rahman , Víctor M. García-Suárez , Ran He , Kornelius Nielsch , Jung Young Cho , Won-Seon Seo , Jong Wook Roh , Sang-il Kim , Soonil Lee , Kyu Hyoung Lee , Hyun Sik Kim , Weon Ho Shin

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12663

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12663 DOI: 10.1002/eem2.12663
RESEARCH ARTICLE

Realizing High Thermoelectric Performance in n-Type Se-Free Bi2Te3 Materials by Spontaneous Incorporation of FeTe2 Nanoinclusions

Author information +
History +
PDF

Abstract

Bi2Te3-based materials have drawn much attention from the thermoelectric community due to their excellent thermoelectric performance near room temperature. However, the stability of existing n-type Bi2(Te,Se)3 materials is still low due to the evaporation energy of Se (37.70 kJ mol-1) being much lower than that of Te (52.55 kJ mol-1). The evaporated Se from the material causes problems in interconnects of the module while degrading the efficiency. Here, we have developed a new approach for the high-performance and stable n-type Se-free Bi2Te3-based materials by maximizing the electronic transport while suppressing the phonon transport, at the same time. Spontaneously generated FeTe2 nanoinclusions within the matrix during the melt-spinning and subsequent spark plasma sintering is the key to simultaneous engineering of the power factor and lattice thermal conductivity. The nanoinclusions change the fermi level of the matrix while intensifying the phonon scattering via nanoparticles. With a fine-tuning of the fermi level with Cu doping in the n-type Bi2Te3–0.02FeTe2, a high power factor of ∼41 × 10-4 Wm-1 K-2 with an average zT of 1.01 at the temperature range 300–470 K are achieved, which are comparable to those obtained in n-type Bi2(Te,Se)3 materials. The proposed approach enables the fabrication of high-performance n-type Bi2Te3-based materials without having to include volatile Se element, which guarantees the stability of the material. Consequently, widespread application of thermoelectric devices utilizing the n-type Bi2Te3-based materials will become possible.

Keywords

Bi 2Te 3 / energy harvesting / FeTe 2 / nanoinclusion / n-type materials / thermoelectric

Cite this article

Download citation ▾
Jamil Ur Rahman, Woo Hyun Nam, Yong-Jae Jung, Jong Ho Won, Jong-Min Oh, Nguyen Van Du, Gul Rahman, Víctor M. García-Suárez, Ran He, Kornelius Nielsch, Jung Young Cho, Won-Seon Seo, Jong Wook Roh, Sang-il Kim, Soonil Lee, Kyu Hyoung Lee, Hyun Sik Kim, Weon Ho Shin. Realizing High Thermoelectric Performance in n-Type Se-Free Bi2Te3 Materials by Spontaneous Incorporation of FeTe2 Nanoinclusions. Energy & Environmental Materials, 2024, 7(4): e12663 DOI:10.1002/eem2.12663

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Boccardi, F. Ciampa, M. Meo, Smart Mater. Struct. 2019, 28, 105057.

[2]

R. Freer, A. V. Powell, J. Mater. Chem. C 2020, 8, 441.

[3]

T. Cao, X.-L. Shi, Z.-G. Chen, Prog. Mater. Sci. 2023, 131, 101003.

[4]

B. Hu, X.-L. Shi, J. Zou, Z.-G. Chen, Chem. Eng. J. 2022, 437, 135268.

[5]

W.-Y. Chen, X.-L. Shi, J. Zou, Z.-G. Chen, Mater. Sci. Eng. R Rep. 2022, 151, 100700.

[6]

Z.-H. Zheng, X.-L. Shi, D.-W. Ao, W.-D. Liu, M. Li, L.-Z. Kou, Y.-X. Chen, F. Li, M. Wei, G.-X. Liang, P. Fan, G. Q. Lu, Z.-G. Chen, Nat. Sustain. 2022, 6, 180.

[7]

L. D. Zhao, V. P. Dravid, M. G. Kanatzidis, Energ. Environ. Sci. 2014, 7, 251.

[8]

T. M. Tritt, M. A. Subramanian, MRS Bull. 2006, 31, 188.

[9]

J. U. Rahman, N. V. Du, W. H. Nam, W. H. Shin, K. H. Lee, W. S. Seo, M. H. Kim, S. Lee, Sci. Rep. 2019, 9, 8624.

[10]

N. Van Du, J. U. Rahman, P. T. Huy, W. H. Shin, W.-S. Seo, M. H. Kim, S. Lee, Acta Mater. 2019, 166, 650.

[11]

C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Hoboken 2005.

[12]

E. Flage-Larsen, O. Prytz, Appl. Phys. Lett. 2011, 99, 202108.

[13]

H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 041506.

[14]

J. U. Rahman, E.-J. Meang, D. Nguyen, W.-S. Seo, A. Hussain, M. H. Kim, S. Lee, J. Electron. Mater. 2017, 3, 1740.

[15]

H. Mun, S. M. Choi, K. H. Lee, S. W. Kim, ChemSusChem 2015, 8, 2312.

[16]

S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 2015, 348, 109.

[17]

C. Xinzhi, F. Xi’an, R. Zhenzhou, Y. Fan, G. Zhanghua, L. Guangqiang, J. Phys. D Appl. Phys. 2014, 47, 115101.

[18]

J. S. Yoon, J. M. Song, J. U. Rahman, S. Lee, W. S. Seo, K. H. Lee, S. Kim, H. S. Kim, S. I. Kim, W. H. Shin, Acta Mater. 2018, 158, 289.

[19]

J. Martin, L. Wang, L. Chen, G. S. Nolas, Phys. Rev. B 2009, 79, 115311.

[20]

Y. Y. Li, X. Y. Qin, D. Li, J. Zhang, C. Li, Y. F. Liu, C. J. Song, H. X. Xin, H. F. Guo, Appl. Phys. Lett. 2016, 108, 62104.

[21]

J. Choi, J. Y. Lee, S. S. Lee, C. R. Park, H. Kim, Adv. Energy Mater. 2016, 6, 1502181.

[22]

T. H. Zou, X. Y. Qin, D. Li, B. J. Ren, G. L. Sun, Y. C. Dou, Y. Y. Li, L. L. Li, J. Zhang, H. X. Xin, J. Appl. Phys. 2014, 115, 53710.

[23]

Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, Z. Ren, Nano Lett. 2008, 8, 2580.

[24]

M. Jeong, J. Y. Tak, S. Lee, W. S. Seo, H. K. Cho, Y. S. Lim, J. Alloys Compd. 2017, 696, 213.

[25]

W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, J. Shi, Nature 2017, 549, 247.

[26]

T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884.

[27]

R. T. Delves, A. E. Bowley, D. W. Hazelden, H. J. Goldsmid, Proc. Phys. Soc. 1961, 78, 838.

[28]

Y. Pan, J.-F. Li, NPG Asia Mater. 2016, 8, e275.

[29]

B. Zhu, Y. Yu, X. Y. Wang, F. Q. Zu, Z. Y. Huang, J. Mater. Sci. 2017, 52, 8526.

[30]

J. M. Song, J. U. Rahman, J. Y. Cho, S. Lee, W. S. Seo, S. Kim, S.-I. Kim, K. H. Lee, D. Roh, W. H. Shin, Scr. Mater. 2019, 165, 78.

[31]

B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, J. He, Energ. Environ. Sci. 2020, 13, 2106.

[32]

W.-S. Liu, Q. Zhang, Energy Mater. 2011, 1, 577.

[33]

G. C. Wei, J. R. Keiser, R. S. Crouse, M. D. Allen, A. C. Schaffhauser, Post-test analysis of components from selenide isotope generator modules M-7, M-15, and M-18, ORNL/TM—6826.1979.

[34]

D. R. Brown, T. Day, T. Caillat, G. J. Snyder, J. Electron. Mater. 2013, 42, 2014.

[35]

J. Horák, Z. Star, J. Votinsk, Philos. Mag. B 1994, 69, 31.

[36]

J. Horák, Z. Stary, P. Lošťák, J. Pancíř, J. Phys. Chem. Solid 1990, 51, 1353.

[37]

J. C. Slater, J. Chem. Phys. 1964, 41, 3199.

[38]

B. Jariwala, D. Shah, N. M. Ravindra, Thin Solid Films 2015, 589, 396.

[39]

E. P. Arévalo-López, P. Romero-Moreno, J. L Rosas-Huerta, L. Huerta, C. Minaud, M. L. Marquina, R. Escamilla, M. Romero, J. Alloys Compd. 2022, 899, 163297.

[40]

W. H. Shin, J. W. Roh, B. Ryu, H. J. Chang, H. S. Kim, S. Lee, W. S. Seo, K. Ahn, ACS Appl. Mater. Interfaces 2018, 10, 3689.

[41]

G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.

[42]

A. F. Ioffe, Physics of Semiconductors, Academic Press, New York 1960.

[43]

E. Lee, J. Ko, J. Y. Kim, W. S. Seo, S. M. Choi, K. H. Lee, W. Shim, W. Lee, J. Mater. Chem. C 2016, 4, 1313.

[44]

J. U. Rahman, N. Van Du, G. Rahman, V. M Garcia-Suarez, W. S. Seo, M. H. Kim, S. Lee, RSC Adv. 2017, 7, 53255.

[45]

A. F. May, G. J. Snyder, Materials, Preparation, and Characterization in Thermoelectrics, CRC Press, Boca Raton 2017, p.11.

[46]

M. Kim, S. I. Kim, S. W. Kim, H. S. Kim, K. H. Lee, Adv. Mater. 2021, 33, 2005931.

[47]

H. S. Kim, S. D. Kang, Y. L. Tang, R. Hanus, G. J. Snyder, Mater. Horiz. 2016, 3, 234.

[48]

K. H. Lee, Y.-M. Kim, C. O. Park, W. H. Shin, S. W. Kim, H.-S. Kim, S.-I. Kim, Mater. Today Energy 2021, 21, 100795.

[49]

I. T. Witting, T. C. Chasapis, F. Ricci, M. Peters, N. A. Heinz, G. Hautier, G. J. Snyder, Adv. Electron. Mater. 2019, 5, 1800904.

[50]

Q. Zhang, T. Fang, F. Liu, A. Li, Y. Wu, T. Zhu, X. Zhao, Chem. Asian J. 2020, 15, 2775.

[51]

Q. Lognoné, F. Gascoin, J. Alloys Compd. 2014,

[52]

L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, X. Zhao, Adv. Energy Mater. 2015, 5, 1500411.

[53]

S. Byun, J. Cha, C. Zhou, Y. K. Lee, H. Lee, S. H. Park, W. B. Lee, I. Chung, J. Solid State Chem. 2019, 269, 396.

[54]

L.-Y. Lou, J. Yang, Y.-K. Zhu, H. Liang, Y.-X. Zhang, J. Feng, J. He, Z.-H. Ge, L.-D. Zhao, Adv. Sci. 2022, 9, 2203250.

[55]

Y. Zhou, F. Meng, J. He, A. Benton, L. Hu, F. Liu, J. Li, C. Zhang, W. Ao, H. Xie, ACS Appl. Mater. Interfaces 2020, 12, 31619.

[56]

B. Chen, J. Li, M. Wu, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, C. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 45746.

[57]

X.-H. Tian, J.-M. Zhang, Superlattice. Microst. 2018, 119, 201.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/