Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries

Manying Cui , Hongyang Zhao , Yanyang Qin , Shishi Zhang , Ruxin Zhao , Miao Zhang , Wei Yu , Guoxin Gao , Xiaofei Hu , Yaqiong Su , Kai Xi , Shujiang Ding

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12659

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12659 DOI: 10.1002/eem2.12659
RESEARCH ARTICLE

Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries

Author information +
History +
PDF

Abstract

Inhomogeneous lithium-ion (Li+) deposition is one of the most crucial problems, which severely deteriorates the performance of solid-state lithium metal batteries (LMBs). Herein, we discovered that covalent organic framework (COF-1) with periodically arranged boron-oxygen dipole lithiophilic sites could directionally guide Li+ even deposition in asymmetric solid polymer electrolytes. This in situ prepared 3D cross-linked network Poly(ACMO-MBA) hybrid electrolyte simultaneously delivers outstanding ionic conductivity (1.02 × 10-3 S cm-1 at 30°C) and excellent mechanical property (3.5 MPa). The defined nanosized channel in COF-1 selectively conducts Li+ increasing Li+ transference number to 0.67. Besides, The COF-1 layer and Poly(ACMO-MBA) also participate in forming a boron-rich and nitrogen-rich solid electrolyte interface to further improve the interfacial stability. The Li‖Li symmetric cell exhibits remarkable cyclic stability over 1000 h. The Li‖NCM523 full cell also delivers an outstanding lifespan over 400 cycles. Moreover, the Li‖LiFePO4 full cell stably cycles with a capacity retention of 85% after 500 cycles. the Li‖LiFePO4 pouch full exhibits excellent safety performance under pierced and cut conditions. This work thereby further broadens and complements the application of COF materials in polymer electrolyte for dendrite-free and high-energy-density solid-state LMBs.

Keywords

covalent organic framework / ion transport regulation / lithium metal battery / solid polymer electrolyte

Cite this article

Download citation ▾
Manying Cui, Hongyang Zhao, Yanyang Qin, Shishi Zhang, Ruxin Zhao, Miao Zhang, Wei Yu, Guoxin Gao, Xiaofei Hu, Yaqiong Su, Kai Xi, Shujiang Ding. Regulation of Lithium-Ion Flux by Nanotopology Lithiophilic Boron-Oxygen Dipole in Solid Polymer Electrolytes for Lithium-Metal Batteries. Energy & Environmental Materials, 2024, 7(4): e12659 DOI:10.1002/eem2.12659

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 2013, 12, 452.

[2]

Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, J. Am. Chem. Soc. 2014, 136, 16461.

[3]

W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2016, 138, 9385.

[4]

L. Zhao, A. E. Lakraychi, Z. Chen, Y. Liang, Y. Yao, ACS Energy Lett. 2021, 6, 3287.

[5]

J. Chen, Y. Gao, L. Shi, W. Yu, Z. Sun, Y. Zhou, S. Liu, H. Mao, D. Zhang, T. Lu, Q. Chen, D. Yu, S. Ding, Nat. Commun. 2022, 13, 4868.

[6]

X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou, G. Cui, Adv. Energy Mater. 2020, 10, 1903939.

[7]

S. Cui, X. Wu, Y. Yang, M. Fei, S. Liu, G. Li, X.-P. Gao, ACS Energy Lett. 2022, 7, 42.

[8]

G. Wang, P. He, L.-Z. Fan, Adv. Funct. Mater. 2021, 31, 2007198.

[9]

R. V. Salvatierra, G. A. López-Silva, A. S. Jalilov, J. Yoon, G. Wu, A.-L. Tsai, J. M. Tour, Adv. Mater. 2018, 30, 1803869.

[10]

H. Mao, W. Yu, Z. Cai, G. Liu, L. Liu, R. Wen, Y. Su, H. Kou, K. Xi, B. Li, H. Zhao, X. Da, H. Wu, W. Yan, S. Ding, Angew. Chem. Int. Ed. 2020, 60, 19306.

[11]

H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M Rodriguez-Martinez, M. Armand, Z. Zhou, Chem. Soc. Rev. 2017, 46, 797.

[12]

H. Yang, Z. Liu, Y. Wang, N. Li, L. Yu, Adv. Funct. Mater. 2023, 33, 2209837.

[13]

J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, D. Wu, Energy Storage Mater. 2021, 41, 697.

[14]

Y. Wang, F. Liu, G. Fan, X. Qiu, J. Liu, Z. Yan, K. Zhang, F. Cheng, J. Chen, J. Am. Chem. Soc. 2021, 143, 2829.

[15]

G. Zhang, Y.-L. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, J. Am. Chem. Soc. 2019, 141, 1227.

[16]

D. Guo, D. B. Shinde, W. Shin, E. Abou-Hamad, A.-H. Emwas, Z. Lai, A. Manthiram, Adv. Mater. 2022, 34, 2201410.

[17]

Z. Liu, K. Zhang, G. Huang, B. Xu, Y.-L. Hong, X. Wu, Y. Nishiyama, S. Horike, G. Zhang, S. Kitagawa, Angew. Chem. Int. Ed. 2022, 61, e202110695.

[18]

W. Liu, Y. Mi, Z. Weng, Y. Zhong, Z. Wu, H. Wang, Chem. Sci. 2017, 8, 4285.

[19]

S. Yao, Y. Yang, Z. Liang, J. Chen, J. Ding, F. Li, J. Liu, L. Xi, M. Zhu, J. Liu, Adv. Funct. Mater. 2023, 33, 2212466.

[20]

T. W. Kang, J.-H. Lee, J. Lee, J. Park, J.-H. Shin, J.-M. Ju, H. Lee, S. Lee, J.-H. Kim, Adv. Mater. 2023,

[21]

X. Liang, Y. Tian, Y. Yuan, Y. Kim, Adv. Mater. 2021, 33, 2105647.

[22]

Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, J. Am. Chem. Soc. 2019, 141, 1923.

[23]

M. Doyle, T. F. Fuller, J. Newman, J. Electrochem. Soc. 1993, 140, 1526.

[24]

X. Chen, X.-R. Chen, T.-Z. Hou, B.-Q. Li, X.-B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728.

[25]

Y.-W. Song, P. Shi, B.-Q. Li, X. Chen, C.-X. Zhao, W.-J. Chen, X.-Q. Zhang, X. Chen, Q. Zhang, Matter 2021, 4, 253.

[26]

A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166.

[27]

X. Zhao, P. Pachfule, A. Thomas, Chem. Soc. Rev. 2021, 50, 6871.

[28]

Y. Yan, J. Ju, S. Dong, Y. Wang, L. Huang, L. Cui, Q. Feng Jiang, Y. Wang, G. C. Zhang, Adv. Sci. 2021, 8, 2003887.

[29]

H. Zhang, L. Huang, H. Xu, X. Zhang, Z. Chen, C. Gao, C. Lu, Z. Liu, M. Jiang, G. Cui, eScience 2022, 2, 201.

[30]

J.-C. Lai, J.-F. Mei, X.-Y. Jia, C.-H. Li, X.-Z. You, Z. Bao, Adv. Mater. 2016, 28, 8277.

[31]

X. Zheng, L. Huang, X. Ye, J. Zhang, F. Min, W. Luo, Y. Huang, Chem. 2021, 7, 2312.

[32]

Y. Wang, S. Chen, Z. Li, C. Peng, Y. Li, W. Feng, Energy Storage Mater. 2022, 45, 474.

[33]

M. He, L. Hu, Z. Xue, C. C. Su, P. Redfern, L. A. Curtiss, B. Polzin, A. von Cresce, K. Xu, Z. Zhang, J. Electrochem. Soc. 2015, 162, A1725.

[34]

S. C. Kim, X. Kong, R. A. Vilá, W. Huang, Y. Chen, D. T. Boyle, Z. Yu, H. Wang, Z. Bao, J. Qin, Y. Cui, J. Am. Chem. Soc. 2021, 143, 10301.

[35]

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, NY 2000.

[36]

H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li, J. B. Goodenough, Nano Lett. 2018, 18, 7414.

[37]

N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, J. Jiang, K. Xu, M. A. Schroeder, X. He, C. Wang, ACS Energy Lett. 2021, 1839, 6.

[38]

X. Li, G. Han, Z. Qian, Q. Liu, Z. Qiang, Y. Song, H. Huo, C. Du, S. Lou, G. Yin, Adv. Sci. 2022, 9, 2103964.

[39]

J. Zhang, W. Wang, H. Tang, W. Q. Bai, X. Ge, X. L. Wang, C. D. Gu, J. P. Tu, J. Power Sources 2015, 277, 304.

[40]

Y. Gao, S. Sun, X. Zhang, Y. Liu, J. Hu, Z. Huang, M. Gao, H. Pan, Adv. Funct. Mater. 2021, 31, 2009692.

[41]

H. Sonoki, M. Matsui, N. Imanishi, J. Electrochem. Soc. 2019, 166, A3593.

[42]

H. M. Law, J. Yu, S. C. T. Kwok, G. Zhou, M. J. Robson, J. Wu, F. Ciucci, Energy Storage Mater. 2022, 46, 182.

[43]

Y. Wu, D. Ren, X. Liu, G.-L. Xu, X. Feng, Y. Zheng, Y. Li, M. Yang, Y. Peng, X. Han, L. Wang, Z. Chen, Y. Ren, L. Lu, X. He, J. Chen, K. Amine, M. Ouyang, Adv. Energy Mater. 2021, 11, 2102299.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/