Strong Interaction Between Redox Mediators and Defect-Rich Carbons Enabling Simultaneously Boosted Voltage Windows and Capacitance for Aqueous Supercapacitors

Lu Guan , Yifan Zhu , Yi Wan , Mengdi Zhang , Qiang Li , Xiaoling Teng , Yunlong Zhang , Hao Yang , Yan Zhang , Han Hu , Mingbo Wu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12658

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12658 DOI: 10.1002/eem2.12658
RESEARCH ARTICLE

Strong Interaction Between Redox Mediators and Defect-Rich Carbons Enabling Simultaneously Boosted Voltage Windows and Capacitance for Aqueous Supercapacitors

Author information +
History +
PDF

Abstract

Energy density, the Achilles’ heel of aqueous supercapacitors, is simultaneously determined by the voltage window and specific capacitance of the carbon materials, but the strategy of synchronously boosting them has rarely been reported. Herein, we demonstrate that the rational utilization of the interaction between redox mediators (RMs) and carbon electrode materials, especially those with rich intrinsic defects, contributes to extended potential windows and more stored charges concurrently. Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl (4OH-TEMPO) and intrinsic defect-rich carbons as the RMs and electrode materials, respectively, the potential window and capacitance are increased by 67% and sixfold in a neutral electrolyte. Moreover, this strategy could also be applied to alkaline and acid electrolytes. The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defect-rich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials. For the RMs offering weaker interaction with the electrode materials, the water splitting still proceeds with a thus sole increase of the stored charges. The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.

Keywords

defect-rich carbons / redox mediators / strong interaction / supercapacitors / voltage windows

Cite this article

Download citation ▾
Lu Guan, Yifan Zhu, Yi Wan, Mengdi Zhang, Qiang Li, Xiaoling Teng, Yunlong Zhang, Hao Yang, Yan Zhang, Han Hu, Mingbo Wu. Strong Interaction Between Redox Mediators and Defect-Rich Carbons Enabling Simultaneously Boosted Voltage Windows and Capacitance for Aqueous Supercapacitors. Energy & Environmental Materials, 2024, 7(4): e12658 DOI:10.1002/eem2.12658

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Shi, M. Yang, B. Zhang, Z. Ai, H. Hu, Y. Shao, J. Shen, Y. Wu, X. Hao, Adv. Funct. Mater. 2021, 32, 2108843.

[2]

L. Hu, C. Shi, K. Guo, T. Zhai, H. Li, Y. Wang, Angew. Chem. Int. Ed. 2018, 57, 8214.

[3]

T. Guo, D. Zhou, L. Pang, S. Sun, T. Zhou, J. Su, Small 2022, 18, e2106360.

[4]

X. Han, C. Wu, H. Li, Y. Zhang, W. Sun, B. Jia, I. D. Gates, Z. H. Huang, T. Ma, Adv. Funct. Mater. 2022, 32, 2113209.

[5]

Y. Jiang, J. Liu, Energy Environ. Mater. 2019, 2, 30.

[6]

Y. Wan, Y. Li, K. Wang, H. Liu, H. Hu, M. Wu, Adv. Energy Sustain. Res. 2022, 3, 2100221.

[7]

N. Zahir, P. Magri, W. Luo, J. J. Gaumet, P. Pierrat, Energy Environ. Mater. 2022, 5, 201.

[8]

K. L. Van Aken, M. Beidaghi, Y. Gogotsi, Angew. Chem. Int. Ed. 2015, 54, 4806.

[9]

J. Zeng, C. Xu, T. Gao, X. Jiang, X.-B. Wang, Carbon Energy 2021, 3, 193.

[10]

Q. Pan, C. Yang, Q. Jia, W. Qi, H. Wei, M. Wang, S. Yang, B. Cao, Chem. Eng. J. 2020, 397, 125524.

[11]

G. Zhang, H. Yao, F. Zhang, Z. Gao, Q. Li, Y. Yang, X. Lu, Nano Res. 2019, 12, 1061.

[12]

W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, Adv. Mater. 2017, 29, 1703463.

[13]

K. Zhang, Y. Lin, L. Chen, J. Huang, L. Wang, M. Peng, X. Tang, T. Hu, K. Yuan, Y. Chen, Sci. China Mater. 2021, 64, 2163.

[14]

Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon Energy 2019, 1, 253.

[15]

L. Guan, L. Pan, T. Peng, T. Qian, Y. Huang, X. Li, C. Gao, Z. Li, H. Hu, M. Wu, Carbon 2019, 152, 537.

[16]

H. Yang, Z. Feng, X. Teng, L. Guan, H. Hu, M. Wu, Infomat 2021, 3, 631.

[17]

L. Guan, L. Pan, T. Peng, C. Gao, W. Zhao, Z. Yang, H. Hu, M. Wu, ACS Sustain. Chem. Eng. 2019, 7, 8405.

[18]

X. Luo, H. Zheng, W. Lai, P. Yuan, S. Li, D. Li, Y. Chen, Energy Environ. Mater. 2023, 6, e12402.

[19]

J. Y. Hwang, M. F El-Kady, M. Li, C. W. Lin, M. Kowal, X. Han, R. B. Kaner, Nano Today 2017, 15, 15.

[20]

J. Lee, B. Krüner, A. Tolosa, S. Sathyamoorthi, D. Kim, S. Choudhury, K. H. Seo, V. Presser, Energ. Environ. Sci. 2016, 9, 3392.

[21]

L. Hu, T. Zhai, H. Li, Y. Wang, ChemSusChem 2019, 12, 1118.

[22]

M. Tian, J. Wu, R. Li, Y. Chen, D. Long, Chem. Eng. J. 2019, 363, 183.

[23]

Z. F. Wang, Z. Yi, S. C. Yu, Y. F. Fan, J. Li, L. Xie, S. C. Zhang, F. Su, C. M. Chen, ACS Appl. Mater. Interfaces 2022, 14, 24497.

[24]

W. Shi, W. Yu, R. Ding, Z. Jia, Y. Li, Y. Huang, C. Tan, X. Sun, E. Liu, J. Mater. Chem. A 2021, 9, 9624.

[25]

W. Sun, F. Wang, B. Zhang, M. Zhang, V. Kuepers, X. Ji, C. Theile, P. Bieker, K. Xu, C. Wang, M. Winter, Science 2021, 371, 46.

[26]

L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902.

[27]

C. Y. Li, M. Chen, S. Liu, X. Lu, J. Meng, J. Yan, H. D. Abruna, G. Feng, T. Lian, Nat. Commun. 2022, 13, 5330.

[28]

L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938.

[29]

M. Zhang, Y. Li, Z. Shen, J. Power Sources 2019, 414, 479.

[30]

D. Chao, S. Z. Qiao, Joule 2020, 4, 1846.

[31]

L. Guan, H. Hu, L. Li, Y. Pan, Y. Zhu, Q. Li, H. Guo, K. Wang, Y. Huang, M. Zhang, Y. Yan, Z. Li, X. Teng, J. Yang, J. Xiao, Y. Zhang, X. Wang, M. Wu, ACS Nano 2020, 14, 6222.

[32]

Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater. 2016, 28, 9532.

[33]

E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S. Freunberger, F. Favier, O. Fontaine, Nat. Mater. 2017, 16, 446.

[34]

Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 2015, 5, 6707.

[35]

Y. Zhang, G. Li, J. Wang, D. Luo, Z. Sun, Y. Zhao, A. Yu, X. Wang, Z. Chen, Adv. Energy Mater. 2021, 11, 2100497.

[36]

W. Ni, Z. Liu, Y. Zhang, C. Ma, H. Deng, S. Zhang, S. Wang, Adv. Mater. 2021, 33, e2003238.

[37]

C. Zhou, D. Wang, A. Li, E. Pan, H. Liu, X. Chen, M. Jia, H. Song, Chem. Eng. J. 2020, 380, 122457.

[38]

J. Zhu, S. Mu, Adv. Funct. Mater. 2020, 30, 2001097.

[39]

S. Yang, S. Xu, J. Tong, D. Ding, G. Wang, R. Chen, P. Jin, X. C. Wang, Appl. Catal. Environ. 2021, 295, 120291.

[40]

W. Wang, L. Shang, G. Chang, C. Yan, R. Shi, Y. Zhao, G. I. N. Waterhouse, D. Yang, T. Zhang, Adv. Mater. 2019, 31, 1808276.

[41]

J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng, R. Wu, F. Fang, Y. Song, D. Sun, Adv. Energy Mater. 2020, 10, 1904045.

[42]

X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu, S. Zeng, R. Xu, Y. Wu, S. Ye, Y. Feng, X. Cheng, Z. Peng, X. Li, Y. Yu, Nano Lett. 2019, 19, 4965.

[43]

S. Liu, M. Wang, X. Sun, N. Xu, J. Liu, Y. Wang, T. Qian, C. Yan, Adv. Mater. 2018, 30, 1704898.

[44]

S. Sur, A. R. Kottaichamy, Z. M. Bhat, M. C. Devendrachari, R. Thimmappa, M. O. Thotiyl, Chem. Phys. Lett. 2018, 712, 160.

[45]

C. Yu, Z. Liu, X. Meng, B. Lu, D. Cui, J. Qiu, Nanoscale 2016, 8, 17458.

[46]

Q. Wu, T. He, Y. Zhang, J. Zhang, Z. Wang, Y. Liu, L. Zhao, Y. Wu, F. Ran, J. Mater. Chem. A 2021, 9, 24094.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/