High-Performance All-Printed Flexible Micro-Supercapacitors with Hierarchical Encapsulation

Yuhang Yuan , Wei Yuan , Yaopeng Wu , Xuyang Wu , Xiaoqing Zhang , Simin Jiang , Bote Zhao , Yu Chen , Chenghao Yang , Liangxin Ding , Zhenghua Tang , Yingxi Xie , Yong Tang

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12657

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12657 DOI: 10.1002/eem2.12657
RESEARCH ARTICLE

High-Performance All-Printed Flexible Micro-Supercapacitors with Hierarchical Encapsulation

Author information +
History +
PDF

Abstract

Printed micro-supercapacitors (MSCs) have shown broad prospect in flexible and wearable electronics. Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes. This study presents an all-printing strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation. This new type of “all-in-one” MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing. The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate, showing excellent flexibility. The MSCs maintain a high capacitance retention of 96.84% even in a completely folded state. An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions. The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm-2 at a current density of 0.3 mA cm-2, and an outstanding volumetric energy density of 9.20 mWh cm-3 at a volumetric power density of 6.89 mW cm-3. For demonstration, a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod. This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.

Keywords

all-printing / flexible / hierarchical encapsulation / micro-supercapacitors / substrate-free

Cite this article

Download citation ▾
Yuhang Yuan, Wei Yuan, Yaopeng Wu, Xuyang Wu, Xiaoqing Zhang, Simin Jiang, Bote Zhao, Yu Chen, Chenghao Yang, Liangxin Ding, Zhenghua Tang, Yingxi Xie, Yong Tang. High-Performance All-Printed Flexible Micro-Supercapacitors with Hierarchical Encapsulation. Energy & Environmental Materials, 2024, 7(4): e12657 DOI:10.1002/eem2.12657

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhang, H. Mei, Y. Cao, X. Yan, J. Yan, H. Gao, H. Luo, S. Wang, X. Jia, L. Kachalova, J. Yang, S. Xue, C. Zhou, L. Wang, Y. Gui, Coord. Chem. Rev. 2021, 438, 213910.

[2]

Y. Yang, T. Zhu, L. Shen, Y. Liu, D. Zhang, B. Zheng, K. Gong, J. Zheng, X. Gong, SmartMat 2022, 3, 349.

[3]

X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Adv. Mater. 2014, 26, 4763.

[4]

P. Simon, Y. Gogotsi, Nat. Mater. 2020, 19, 1151.

[5]

X. Zhang, W. Yuan, H. Huang, M. Xu, Y. Chen, B. Zhao, X. Ding, S. Zhang, Y. Tang, L. Lu, Int. J. Extreme Manuf. 2023, 5, 15501.

[6]

N. Liu, Y. Gao, Small 2017, 13, 1701989.

[7]

J. Zhang, G. Zhang, T. Zhou, S. Sun, Adv. Funct. Mater. 2020, 30, 1910000.

[8]

S. Zheng, X. Shi, P. Das, Z.-S. Wu, X. Bao, Adv. Mater. 2019, 31, 1900583.

[9]

M. F El-Kady, V. Strong, S. Dubin, R. B. Kaner, Science 2012, 335, 1326.

[10]

M. Idrees, S. Ahmed, Z. Mohammed, N. S. Korivi, V. Rangari, Addit. Manuf. 2020, 36, 101525.

[11]

Y. Xu, Y. Yan, W. Lu, S. Yarlagadda, G. Xu, ACS Appl. Energy Mater. 2021, 4, 10639.

[12]

W. Liu, N. Liu, Y. Shi, Y. Chen, C. Yang, J. Tao, S. Wang, Y. Wang, J. Su, L. Li, Y. Gao, J. Mater. Chem. A 2015, 3, 13461.

[13]

P. Sundriyal, S. Bhattacharya, ACS Appl. Energy Mater. 2019, 2, 1876.

[14]

L. Yu, Z. Fan, Y. Shao, Z. Tian, J. Sun, Z. Liu, Adv. Energy Mater. 2019, 9, 1901839.

[15]

M. M. Ovhal, N. Kumar, H. B. Lee, B. Tyagi, K.-J. Ko, S. Boud, J.-W. Kang, Cell Rep. Phys. Sci. 2021, 2, 100562.

[16]

B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu, W. Chen, Nano Energy 2013, 2, 1071.

[17]

S. Kwon, T. Lee, H.-J. Choi, J. Ahn, H. Lim, G. Kim, K.-B. Choi, J. Lee, J. Power Sources 2021, 481, 228939.

[18]

Y. Wu, J. Chen, W. Yuan, X. Zhang, S. Bai, Y. Chen, B. Zhao, X. Wu, C. Wang, H. Huang, Y. Tang, Z. Wan, S. Zhang, Y. Xie, J. Mater. Sci. Technol. 2023, 143, 12.

[19]

L. Liu, Y. Feng, J. Liang, S. Li, B. Tian, W. Yao, W. Wu, J. Power Sources 2019, 425, 195.

[20]

K. Seong, J.-Y. Jung, J. Kang, D.-S. Kim, L. Lyu, S. Seo, J.-H. Kim, Y. Piao, J. Mater. Chem. A 2020, 8, 25986.

[21]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Adv. Mater. 2013, 25, 4539.

[22]

X. Yan, Y. Tong, X. Wang, F. Hou, J. Liang, Energy Environ. Mater. 2022, 5, 800.

[23]

K. Hassan, M. J. Nine, T. T. Tung, N. Stanley, P. L. Yap, H. Rastin, L. Yu, D. Losic, Nanoscale 2020, 12, 19007.

[24]

J. Liang, C. Jiang, W. Wu, Appl. Phys. Rev. 2021, 8, 21319.

[25]

S. Mooraj, Z. Qi, C. Zhu, J. Ren, S. Peng, L. Liu, S. Zhang, S. Feng, F. Kong, Y. Liu, E. B. Duoss, S. Baker, W. Chen, Nano Res. 2021, 14, 2105.

[26]

Y. Zhang, T. Ji, S. Hou, L. Zhang, Y. Shi, J. Zhao, X. Xu, J. Power Sources 2018, 403, 109.

[27]

M.-L. Seol, I. Nam, E. L. Ribeiro, B. Segel, D. Lee, T. Palma, H. Wu, D. Mukherjee, B. Khomami, C. Hill, J.-W. Han, M. Meyyappan, ACS Appl. Energy Mater. 2020, 3, 4965.

[28]

S.-S. Lee, S.-H. Kim, D. B. Ahn, K.-H. Lee, Y. Jo, S. Jeong, S.-Y. Lee, Adv. Funct. Mater. 2022, 32, 2202901.

[29]

Y. Liu, S. Zheng, J. Ma, Y. Zhu, J. Wang, X. Feng, Z.-S. Wu, J. Energy Chem. 2021, 63, 514.

[30]

L. Li, J. Meng, X. Bao, Y. Huang, X.-P. Yan, H.-L. Qian, C. Zhang, T. Liu, Adv. Energy Mater. 2023, 13, 2203683.

[31]

H. Ma, F. Lv, L. Shen, K. Yang, Y. Jiang, J. Ma, X. Geng, T. Sun, Y. Pan, Z. Xie, M. Xue, N. Zhu, Energy Environ. Mater. 2022, 5, 986.

[32]

J. Zhao, H. Lu, Y. Zhang, S. Yu, O. Malyi, X. Zhao, L. Wang, H. Wang, J. Peng, X. Li, Y. Zhang, S. Chen, H. Pan, G. Xing, C. Lu, Y. Tang, X. Chen, Sci. Adv. 2021, 7, eabd6978.

[33]

M. Yao, Z. Yuan, S. Li, T. He, R. Wang, M. Yuan, Z. Niu, Adv. Mater. 2021, 33, 2008140.

[34]

D. Qi, Y. Liu, Z. Liu, L. Zhang, X. Chen, Adv. Mater. 2017, 29, 1602802.

[35]

Z.-S. Wu, X. Feng, H.-M. Cheng, Natl. Sci. Rev. 2014, 1, 277.

[36]

J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, L. Jiang, Sci. Rep. 2014, 4, 5545.

[37]

C. Zequine, C. K. Ranaweera, Z. Wang, P. R. Dvornic, P. K. Kahol, S. Singh, P. Tripathi, O. N. Srivastava, S. Singh, B. K. Gupta, G. Gupta, R. K. Gupta, Sci. Rep. 2017, 7, 1174.

[38]

S. N. Karri, S. P. Ega, P. Srinivasan, V. Perupogu, J. Energy Storage 2021, 44, 103399.

[39]

H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King’ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, ACS Nano 2013, 7, 5131.

[40]

P. Giannakou, M. O. Tas, B. Le Borgne, M. Shkunov, ACS Appl. Mater. Interfaces 2020, 12, 8456.

[41]

F. Meng, M. Zhang, J. Huang, W. F. Lu, J. M. Xue, H. Wang, Adv. Funct. Mater. 2021, 31, 2008280.

[42]

S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao, X. Zhao, J. Mater. Chem. A 2014, 2, 18125.

[43]

Q. Tu, X. Li, Z. Xiong, H. Wang, J. Fu, L. Chen, J. Energy Storage 2022, 53, 105211.

[44]

K. Tang, H. Ma, Y. Tian, Z. Liu, H. Jin, S. Hou, K. Zhou, X. Tian, Virtual Phys. Prototyp. 2020, 15, 511.

[45]

B. Li, N. Hu, Y. Su, Z. Yang, F. Shao, G. Li, C. Zhang, Y. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 46044.

[46]

P. Das, X. Shi, Q. Fu, Z.-S. Wu, Adv. Funct. Mater. 2020, 30, 1908758.

[47]

Y. Zhang, Y. Song, Y. Shi, Y. Wang, X. Wang, X. Shi, C. Tang, J. Liu, G. Wang, Q. Tan, L. Li, Appl. Surf. Sci. 2022, 597, 153730.

[48]

Y. Wang, Y. Zhang, J. Liu, G. Wang, F. Pu, A. Ganesh, C. Tang, X. Shi, Y. Qiao, Y. Chen, H. Liu, C. Kong, L. Li, Energy Storage Mater. 2020, 30, 412.

[49]

S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He, F. Kang, H.-M. Cheng, X. Bao, Energy Environ. Sci. 2018, 11, 2001.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/