Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO2-to-Formate Electrocatalytic Conversion
Liangping Xiao , Rusen Zhou , Tianqi Zhang , Xiaoxiang Wang , Renwu Zhou , Patrick J. Cullen , Kostya (Ken) Ostrikov
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12656
Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO2-to-Formate Electrocatalytic Conversion
Ever-increasing emissions of anthropogenic carbon dioxide (CO2) cause global environmental and climate challenges. Inspired by biological photosynthesis, developing effective strategies NeuNlto up-cycle CO2 into high-value organics is crucial. Electrochemical CO2 reduction reaction (CO2RR) is highly promising to convert CO2 into economically viable carbon-based chemicals or fuels under mild process conditions. Herein, mesoporous indium supported on multi-walled carbon nanotubes (mp-In@MWCNTs) is synthesized via a facile wet chemical method. The mp-In@MWCNTs electrocatalysts exhibit high CO2RR performance in reducing CO2 into formate. An outstanding activity (current density -78.5 mA cm-2), high conversion efficiency (Faradaic efficiency of formate over 90%), and persistent stability (∼30 h) for selective CO2-to-formate conversion are observed. The outstanding CO2RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network, which promote the adsorption and desorption of reactants and intermediates while improving electron transfer. These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO2 conversion.
CO 2RR / conductive network / electrocatalysts / formate
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
/
| 〈 |
|
〉 |