CO2-Induced Modulation of Si–O Bonds for Low Temperature Plastic Deformation of Amorphous Silica Nanoparticles with Enhanced Photoluminescence

Kang Huang , Wenzhuo Wu , Song Xu , Pengfei Yan , Zhongming Wei , Qun Xu

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12655

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) :e12655 DOI: 10.1002/eem2.12655
RESEARCH ARTICLE

CO2-Induced Modulation of Si–O Bonds for Low Temperature Plastic Deformation of Amorphous Silica Nanoparticles with Enhanced Photoluminescence

Author information +
History +
PDF

Abstract

Modulation of Si–O bonds under mild conditions has been a challenging issue in the field of material science, which is critical to manufacture high-performance silica-based optical and photonic devices. Herein, we introduce a nondestructive technique to achieve Si–O bond rearrangement, leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H2O solution under mild temperature. Specifically, plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO2 at 40°C under 20 MPa. Experimental and theoretical studies revealed the critical role of supercritical CO2 in the plastic deformation process, which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si–O bonds and transformation of ring structures. This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.

Keywords

amorphous silica / anisotropic stress / photoluminescence / plastic deformation / supercritical CO 2

Cite this article

Download citation ▾
Kang Huang, Wenzhuo Wu, Song Xu, Pengfei Yan, Zhongming Wei, Qun Xu. CO2-Induced Modulation of Si–O Bonds for Low Temperature Plastic Deformation of Amorphous Silica Nanoparticles with Enhanced Photoluminescence. Energy & Environmental Materials, 2024, 7(4): e12655 DOI:10.1002/eem2.12655

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties, Academic, San Diego, CA, USA 1986.

[2]

B. Ding, P. Zeng, Z. Huang, L. Dai, T. Lan, H. Xu, Y. Pan, Y. Luo, Q. Yu, H.-M. Cheng, B. Liu, Nat. Commun. 2022, 13, 1212.

[3]

T.-R. Wei, M. Jin, Y. Wang, H. Chen, Z. Gao, K. Zhao, P. Qiu, Z. Shan, J. Jiang, R. Li, Science 2020, 369, 542.

[4]

Z. Hong, P. Ye, D. A. Loy, R. Liang, Adv. Sci. 2022, 9, 2105595.

[5]

M. L. Ferreira Nascimento, E. D. Zanotto, Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. B 2007, 48, 201.

[6]

K. Muralidharan, J. Simmons, P. Deymier, K. Runge, J. Non-Cryst. Solids 2005, 351, 1532.

[7]

R. Brueckner, J. Non-Cryst. Solids 1970, 5, 123.

[8]

N. F. Mott, Philos. Mag. B 1987, 56, 257.

[9]

D. G. Moore, L. Barbera, K. Masania, A. R. Studart, Nat. Mater. 2020, 19, 212.

[10]

F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, B. E. Rapp, Nature 2017, 544, 337.

[11]

K. Hirose, G. Morard, R. Sinmyo, K. Umemoto, J. Hernlund, G. Helffrich, S. Labrosse, Nature 2017, 543, 99.

[12]

F. Kotz, N. Schneider, A. Striegel, A. Wolfschläger, N. Keller, M. Worgull, W. Bauer, D. Schild, M. Milich, C. Greiner, Adv. Mater. 2018, 30, 1707100.

[13]

F. Kotz, P. Risch, K. Arnold, S. Sevim, J. Puigmartí-Luis, A. Quick, M. Thiel, A. Hrynevich, P. D. Dalton, D. Helmer, Nat. Commun. 2019, 10, 1439.

[14]

K. Zheng, C. C. Wang, Y. Q. Cheng, Y. H. Yue, X. D. Han, Z. Zhang, Z. W. Shan, S. X. Mao, M. M. Ye, Y. D. Yin, E. Ma, Nat. Commun. 2010, 1, 24.

[15]

A. Hasmy, S. Ispas, B. Hehlen, Nature 2021, 599, 62.

[16]

A. Majumdar, M. Wu, Y. Pan, T. Iitaka, J. S. Tse, Nat. Commun. 2020, 11, 4815.

[17]

C. Meade, R. Jeanloz, Science 1988, 241, 1072.

[18]

C. Weigel, M. Mebarki, S. Clément, R. Vacher, M. Foret, B. Rufflé, Phys. Rev. B 2019, 100, 094102.

[19]

S.-G. Kang, K. Jeong, J. Paeng, W. Jeong, S. Han, J.-P. Ahn, S. Boles, H. N. Han, I.-S. Choi, Acta Mater. 2022, 238, 118203.

[20]

Y. Zhou, Q. Xu, Phys. Chem. Chem. Phys. 2023, 25, 3607.

[21]

B. Gao, S. Xu, Q. Xu, Angew. Chem. Int. Ed. 2022, 61, e202117084.

[22]

Y. Ren, C. Li, Q. Xu, J. Yan, Y. Li, P. Yuan, H. Xia, C. Niu, X. Yang, Y. Jia, Appl. Catal. B Environ. 2019, 245, 648.

[23]

W. Liu, Q. Xu, W. Cui, C. Zhu, Y. Qi, Angew. Chem. Int. Ed. 2017, 56, 1600.

[24]

T. Ge, Z. Wei, X. Zheng, P. Yan, Q. Xu, J. Phys. Chem. Lett. 2021, 12, 6543.

[25]

T. Geisler, L. Dohmen, C. Lenting, M. B. Fritzsche, Nat. Mater. 2019, 18, 342.

[26]

T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature 1999, 402, 867.

[27]

C. Y. Panicker, H. T. Varghese, D. Philip, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 802.

[28]

Y.-H. Kim, S.-K. Lee, H. J. Kim, J. Vac. Sci. Technol. A 2000, 18, 1216.

[29]

A. Pasquarello, R. Car, Phys. Rev. Lett. 1998, 80, 5145.

[30]

H. Zhang, D. R. Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Lin, Z. Ji, J. Am. Chem. Soc. 2012, 134, 15790.

[31]

I. Halasz, A. Kierys, J. Goworek, H. Liu, R. E. Patterson, J. Mater. Chem. C 2011, 115, 24788.

[32]

S. K. Sharma, J. F. Mammone, M. F. Nicol, Nature 1981, 292, 140.

[33]

T. Wang, S. Luo, G. A. Tompsett, M. T. Timko, W. Fan, S. M. Auerbach, J. Am. Chem. Soc. 2019, 141, 20318.

[34]

K. Awazu, H. Kawazoe, J. Appl. Phys. 2003, 94, 6243.

[35]

H. Taniyama, K. Takagi, Langmuir 2022, 38, 5550.

[36]

M. Chang, Y. Song, J. Chen, L. Cui, Z. Shi, Y. Sheng, H. Zou, ACS Sustain. Chem. Eng. 2017, 6, 223.

[37]

J. M. Kim, S. M. Chang, S. Kim, K.-S. Kim, J. Kim, W.-S. Kim, Ceram. Int. 2009, 35, 1243.

[38]

P. A. Jalil, M. Faiz, N. Tabet, N. Hamdan, Z. Hussain, J. Catal. 2003, 217, 292.

[39]

Y. Zhou, S. A. Kadam, M. Shamzhy, J. Cejka, M. Opanasenko, ACS Catal. 2019, 9, 5136.

[40]

S. Zhao, G. Siqueira, S. Drdova, D. Norris, C. Ubert, A. Bonnin, S. Galmarini, M. Ganobjak, Z. Pan, S. Brunner, Nature 2020, 584, 387.

[41]

Y. Zhou, P. Yan, S. Zhang, C. Ma, T. Ge, X. Zheng, L. Zhang, J. Jiang, Y. Shen, J. Chen, Q. Xu, Nano Today 2021, 40, 101272.

[42]

T. A. Michalske, S. W. Freiman, Nature 1982, 295, 511.

[43]

H. Li, J. Zhong, J. Shen, J. Liu, B. Li, X. Tang, J. Pan, Z. Xu, J. Lu, Y. Y. Li, J. Am. Ceram. Soc. 2022, 105, 2945.

[44]

R. Hemley, A. Jephcoat, H. K. Mao, L. Ming, M. Manghnani, Nature 1988, 334, 52.

[45]

A. Anedda, C. M. Carbonaro, F. Clemente, R. Corpino, P. C. Ricci, J. Phys. Chem. B 2005, 109, 1239.

[46]

A. Anedda, C. M. Carbonaro, F. Clemente, R. Corpino, S. Grandi, P. Mustarelli, A. Magistris, J. Non-Cryst. Solids 2003, 322, 68.

[47]

A. Aboshi, N. Kurumoto, T. Yamada, T. Uchino, J. Mater. Chem. C 2007, 111, 8483.

[48]

D. Mora-Fonz, A. L. Shluger, Phys. Rev. B 2019, 99, 014202.

[49]

Y. Cheng, Q. Yang, J. Wang, T. Dimitriadis, M. Schumacher, H. Zhang, M. J. Müller, N. Amini, F. Yang, A. Schoekel, Nat. Commun. 2022, 13, 7352.

[50]

S. Munetoh, T. Motooka, K. Moriguchi, A. Shintani, Comput. Mater. Sci. 2007, 39, 334.

[51]

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, Comput. Phys. Commun. 2022, 271, 108171.

[52]

L. Wang, RSC Adv. 2022, 12, 26406.

[53]

J. Ke, P. Ying, Y. Du, B. Zou, H. Sun, J. Zhang, Phys. Chem. Chem. Phys. 2022, 24, 15991.

[54]

W. G. Hoover, A. J. Ladd, B. Moran, Phys. Rev. Lett. 1982, 48, 1818.

[55]

H. Sun, J. Phys. Chem. B 1998, 102, 7338.

[56]

J. Martínez, S. Palomares-Sánchez, G. Ortega-Zarzosa, F. Ruiz, Y. Chumakov, Mater. Lett. 2006, 60, 3526.

[57]

Y. Zeng, B. Tao, J. Chen, Z. Yin, J. Cryst. Growth 2015, 429, 35.

[58]

Y. Zeng, B. Tao, J. Chen, Z. Yin, J. Phys. D. Appl. Phys. 2016, 49, 195308.

[59]

M. Parrinello, A. Rahman, J. Chem. Phys. 1982, 76, 2662.

[60]

M. Parrinello, A. Rahman, Phys. Rev. Lett. 1980, 45, 1196.

[61]

H. C. Andersen, J. Chem. Phys. 1980, 72, 2384.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/