Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor

Huamin Chen , Shujun Guo , Shaochun Zhang , Yu Xiao , Wei Yang , Zhaoyang Sun , Xu Cai , Run Fang , Huining Wang , Yun Xu , Jun Wang , Zhou Li

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12654

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12654 DOI: 10.1002/eem2.12654
RESEARCH ARTICLE

Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor

Author information +
History +
PDF

Abstract

Triboelectric nanogenerators (TENGs) have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility, biocompatibility, and miniaturization. In this study, an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate (PMMA) composite electrode (MP-TENG) is proposed for use in wireless human health monitor. The multifunctional tile-nanostructured MXene/PMMA film, which is self-assembled through vacuum filtration, exhibits good conductivity, excellent charge capacity, and high flexibility. Thus, the MXene/PMMA composite electrode can simultaneously function as a charge-generating, charge-trapping, and charge-collecting layer. Furthermore, the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration. At a mass fraction of 4% PMMA, the MP-TENG achieves the optimal output performance, with an output voltage of 37.8 V, an output current of 1.8 µA, and transferred charge of 14.1 nC. The output power is enhanced over twofold compared with the pure MXene-based TENG. Moreover, the MP-TENG has sufficient power capacity and durability to power small electronic devices. Finally, a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions. Consequently, the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring, telemedicine, and self-powered systems.

Keywords

flexible electrode / MXene / tile nanostructure / triboelectric nanogenerator / wireless monitor

Cite this article

Download citation ▾
Huamin Chen, Shujun Guo, Shaochun Zhang, Yu Xiao, Wei Yang, Zhaoyang Sun, Xu Cai, Run Fang, Huining Wang, Yun Xu, Jun Wang, Zhou Li. Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor. Energy & Environmental Materials, 2024, 7(4): e12654 DOI:10.1002/eem2.12654

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Dai, L. Li, B. Shi, Z. Li, Biosens. Bioelectron. 2021, 194, 113609.

[2]

Y. Wu, Y. Li, Y. Zou, W. Rao, Y. Gai, J. Xue, L. Wu, X. Qu, Y. Liu, G. Xu, L. Xu, Z. Liu, Z. Li, Nano Energy 2022, 92, 106715.

[3]

Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, X. Feng, Adv. Mater. 2020, 32, 1902062.

[4]

J. J. Kim, Y. Wang, H. Wang, S. Lee, T. Yokota, T. Someya, Adv. Funct. Mater. 2021, 31, 2170286.

[5]

X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, K. Lee, X. Feng, Y. Huang, J. A. Rogers, Nature 2019, 575, 473.

[6]

J. D. N Dionisio, W. G. Burns III, R. Gilbert, ACM Comput. Surv. 2013, 45, 34.

[7]

F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Nano Energy 2012, 1, 328.

[8]

Z. L. Wang, Mater. Today 2017, 20, 74.

[9]

Z. L. Wang, Nano Energy 2020, 68, 104272.

[10]

Y. Chen, Y. Jie, N. Wang, Z. L. Wang, X. Cao, Nano Energy 2020, 76, 105051.

[11]

F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109.

[12]

G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, Z. L. Wang, Nano Lett. 2013, 13, 2282.

[13]

Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 7342.

[14]

S. Wang, Y. Xie, S. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818.

[15]

C. Wang, X. Qu, Q. Zheng, Y. Liu, P. Tan, B. Shi, H. Ouyang, S. Chao, Y. Zou, C. Zhao, Z. Liu, Y. Li, Z. Li, ACS Nano 2021, 15, 10130.

[16]

Z. Zhao, C. Yan, Z. Liu, X. Fu, L. M. Peng, Y. Hu, Z. Zheng, Adv. Mater. 2016, 28, 10267.

[17]

J. Bae, J. Lee, S. Kim, J. Ha, B. S. Lee, Y. Park, C. Choong, J. B. Kim, Z. L. Wang, H. Y. Kim, J. J. Park, U. I. Chung, Nat. Commun. 2014, 5, 4929.

[18]

Y.-C. Lai, Y.-C. Hsiao, H.-M. Wu, Z. L. Wang, Adv. Sci. 2019, 6, 1801883.

[19]

H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu, Sustain. Energy Fuels 2020, 4, 1063.

[20]

W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R. X. Xu, Z. L. Wang, X. C. Zeng, Z. Wang, Nature 2020, 578, 392.

[21]

H. Chen, W. Yang, C. Zhang, M. Wu, W. Li, Y. Zou, L. Lv, H. Yu, H. Ke, R. Liu, Y. Xu, J. Wang, Z. Li, Nano Res. 2022, 15, 2465.

[22]

S. A. Khan, H. L. Zhang, Y. Xie, M. Gao, M. A. Shah, A. Qadir, Y. Lin, Adv. Eng. Mater. 2017, 19, 1600710.

[23]

S. Parandeh, M. Kharaziha, F. Karimzadeh, Nano Energy 2019, 59, 412.

[24]

J. Ma, J. Zhu, P. Ma, Y. Jie, Z. L. Wang, X. Cao, ACS Energy Lett. 2020, 5, 3005.

[25]

C. Chen, Z. Wen, J. Shi, X. Jian, P. Li, J. T. W. Yeow, X. Sun, Nat. Commun. 2020, 11, 4143.

[26]

Q. Wang, M. Chen, W. Li, Z. Li, Y. Chen, Y. Zhai, Nano Energy 2017, 41, 128.

[27]

Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, J. Chen, Adv. Mater. 2021, 33, 2101262.

[28]

J. Qin, X. Yang, C. Shen, Y. Chang, Y. Deng, Z. Zhang, H. Liu, C. Lv, Y. Li, C. Zhang, L. Dong, C. Shan, Nano Energy 2022, 101, 107549.

[29]

J. Sun, Y. Chang, J. Liao, S. Chang, S. Dai, Y. Shang, C. Shan, L. Dong, Nano Energy 2022, 99, 107392.

[30]

J. Zhao, Y. Xiao, W. Yang, S. Zhang, H. Wang, Q. Wang, Z. Sun, W. Li, M. Gao, Z. Wang, Y. Xu, H. Chen, J. Wang, Adv. Mater. Technol. 2023, 8, 2201769.

[31]

W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen, Y. Su, G. Zhu, P. Bai, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 4090.

[32]

D. Yoo, S. Lee, J.-W. Lee, K. Lee, E. Y. Go, W. Hwang, I. Song, S. B. Cho, D. W. Kim, D. Choi, J.-Y. Sim, D. S. Kim, Nano Energy 2020, 69, 104388.

[33]

S. Niu, X. Wang, F. Yi, Y. S. Zhou, Z. L. Wang, Nat. Commun. 2015, 6, 8975.

[34]

C. Shan, W. Liu, Z. Wang, X. Pu, W. He, Q. Tang, S. Fu, G. Li, L. Long, H. Guo, J. Sun, A. Liu, C. Hu, Energy Environ. Sci. 2021, 14, 5395.

[35]

W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma, Z. Li, F. Chen, M.-G. Ma, Adv. Funct. Mater. 2020, 30, 2004181.

[36]

D. Y. Xie, Q. Ma, H. Qi, X. Liu, X. Chen, Y. Jin, D. Li, W. Yu, X. Dong, Nanoscale 2021, 13, 19144.

[37]

D. W. Kim, J. H. Lee, J. K. Kim, U. Jeong, NPG Asia Mater. 2020, 12, 6.

[38]

H. Chen, L. Bai, T. Li, C. Zhao, J. Zhang, N. Zhang, G. Song, Q. Gan, Y. Xu, Nano Energy 2018, 46, 73.

[39]

H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 5691.

[40]

S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, Z. L. Wang, Adv. Mater. 2014, 26, 6720.

[41]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, S. Park, Adv. Mater. 2018, 30, 1801210.

[42]

A. S. M. I. Uddin, P. S. Kumar, K. Hassan, H. C. Kim, Sens. Actuators B Chem. 2018, 258, 857.

[43]

S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918.

[44]

C. Wu, T. W. Kim, J. H. Park, H. An, J. Shao, X. Chen, Z. L. Wang, ACS Nano 2017, 11, 8356.

[45]

S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H.-J. Shin, S.-W. Kim, J. H. Cho, Adv. Funct. Mater. 2018, 28, 1703778.

[46]

R. Wen, J. Guo, A. Yu, J. Zhai, Z. l. Wang, Adv. Funct. Mater. 2019, 29, 1807655.

[47]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.

[48]

K. Ghosh, M. Pumera, Small Methods 2021, 5, 2100451.

[49]

Q. Wei, G. Chen, H. Pan, Z. Ye, C. Au, C. Chen, X. Zhao, Y. Zhou, X. Xiao, H. Tai, Y. Jiang, G. Xie, Y. Su, J. Chen, Small Methods 2022, 6, 2101051.

[50]

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, J. L. Lutkenhaus, Sci. Adv. 2018, 4, eaaq0118.

[51]

H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi, J.-H. Park, B. H. Lee, Y.-H. Kim, S. Lee, ACS Nano 2021, 15, 1388.

[52]

Y. Gao, G. Liu, T. Bu, Y. Liu, Y. Qi, Y. Xie, S. Xu, W. Deng, W. Yang, C. Zhang, Nano Res. 2021, 14, 4833.

[53]

Z. Zhang, Q. Yan, Z. Liu, X. Zhao, Z. Wang, J. Sun, Z. L. Wang, R. Wang, L. Li, Nano Energy 2021, 88, 106257.

[54]

D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang, L. Yu, ACS Nano 2021, 15, 2911.

[55]

D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, L. Yu, Nanomicro Lett. 2021, 13, 57.

[56]

X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie, Z. L. Wang, Adv. Funct. Mater. 2021, 31, 2104928.

[57]

Y. Dong, S. S. K. Mallineni, K. Maleski, H. Behlow, V. N. Mochalin, A. M. Rao, Y. Gogotsi, R. Podila, Nano Energy 2018, 44, 103.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/