Thick Electrodes of a Self-Assembled MXene Hydrogel Composite for High-Rate Energy Storage

Leiqiang Qin , Jianxia Jiang , Lintao Hou , Fengling Zhang , Johanna Rosen

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12653

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (4) : e12653 DOI: 10.1002/eem2.12653
RESEARCH ARTICLE

Thick Electrodes of a Self-Assembled MXene Hydrogel Composite for High-Rate Energy Storage

Author information +
History +
PDF

Abstract

Supercapacitors based on two-dimensional MXene (Ti3C2Tz) have shown extraordinary performance in ultrathin electrodes with low mass loading, but usually there is a significant reduction in high-rate performance as the thickness increases, caused by increasing ion diffusion limitation. Further limitations include restacking of the nanosheets, which makes it challenging to realize the full potential of these electrode materials. Herein, we demonstrate the design of a vertically aligned MXene hydrogel composite, achieved by thermal-assisted self-assembled gelation, for high-rate energy storage. The highly interconnected MXene network in the hydrogel architecture provides very good electron transport properties, and its vertical ion channel structure facilitates rapid ion transport. The resulting hydrogel electrode show excellent performance in both aqueous and organic electrolytes with respect to high capacitance, stability, and high-rate capability for up to 300 µm thick electrodes, which represents a significant step toward practical applications.

Keywords

energy storage / high-rate / hydrogel / MXene / self-assemble

Cite this article

Download citation ▾
Leiqiang Qin, Jianxia Jiang, Lintao Hou, Fengling Zhang, Johanna Rosen. Thick Electrodes of a Self-Assembled MXene Hydrogel Composite for High-Rate Energy Storage. Energy & Environmental Materials, 2024, 7(4): e12653 DOI:10.1002/eem2.12653

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Gogotsi, P. Simon, Science 2011, 334, 917.

[2]

H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, X. Huang, X. Duan, Nat. Rev. Mater. 2019, 4, 45.

[3]

B. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928.

[4]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[5]

M. R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 2016, 7, 12647.

[6]

P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.

[7]

A. V. Mohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, eabf1581.

[8]

B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.

[9]

G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 792.

[10]

A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Schalkwijk, Nat. Mater. 2005, 4, 366.

[11]

M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, Nature 2015, 520, 324.

[12]

V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.

[13]

R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, Nat. Mater. 2015, 14, 271.

[14]

J. Ma, S. Zheng, Y. Cao, Y. Zhu, P. Das, H. Wang, Y. Liu, J. Wang, L. Chi, S. Liu, Z.-S. Wu, Adv. Energy Mater. 2021, 11, 2100746.

[15]

Y. Zhu, S. Wang, J. Ma, P. Das, S. Zheng, Z.-S. Wu, Energy Stor. Mater. 2022, 51, 500.

[16]

Y. Zhu, J. Ma, P. Das, S. Wang, Z.-S. Wu, Small Methods 2023,

[17]

R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H. Chen, C. Liu, F. Li, Adv. Mater. 2016, 28, 3374.

[18]

Z. Li, S. Gadipelli, H. Li, C. A. Howard, D. J. L. Brett, P. R. Shearing, Z. Guo, I. Parkin, F. Li, Nat. Energy 2020, 5, 160.

[19]

Z. Ling, C. Ren, M. Zhao, J. Yang, J. Giammarco, J. Qiu, M. W. Barsoum, Y. Gogotsi, Proc. Natl Acad. Sci. USA 2014, 111, 16676.

[20]

F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. ZhouY, W. H. Wu, Chem. Soc. Rev. 2017, 46, 6816.

[21]

H. Cheng, F. Li, Science 2017, 356, 581.

[22]

T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 2018, 50, 462.

[23]

H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Science 2017, 356, 599.

[24]

L. Qin, Q. Tao, A. E. Ghazaly, J. Fernández-Rodríguez, P. O. Å. Persson, J. Rosen, F. Zhang, Adv. Funct. Mater. 2018, 28, 1703808.

[25]

L. Qin, Q. Tao, X. Liu, M. Fahlman, H. Halim, P. O. Å. Persson, J. Rosen, F. Zhang, Nano Energy 2019, 60, 734.

[26]

M.-Q. Zhao, C. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. V. Aken, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2015, 27, 339.

[27]

Y. Zhu, S. Zheng, P. Liu, J. Ma, P. Das, F. Su, H.-M. Chen, Z.-S. Wu, Natl. Sci. Rev. 2022, 9, nwac024.

[28]

M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dallagnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.

[29]

Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang, X. Duan, Nat. Commun. 2014, 5, 4554.

[30]

T.-S. Wei, B. Y. Ahn, J. Grotto, J. A. Lewis, Adv. Mater. 2018, 30, 1703027.

[31]

Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo, S. Kim, Y. Shin, Y. Park, D. Kim, J.-Y. Choi, H. Lee, ACS Nano 2014, 8, 4580.

[32]

Y. Xia, T. S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409.

[33]

B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E. B. Duoss, C. M. Spadaccini, M. A. Worsley, Y. Li, Joule 2019, 3, 459.

[34]

J. Qi, Y. Yan, Y. Cai, J. Cao, J. Feng, Adv. Funct. Mater. 2021, 31, 2006030.

[35]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[36]

A. S. Zeraati, S. A. Mirkhani, P. Sun, M. Naguib, P. V. Braun, U. Sundararaj, Nanoscale 2021, 13, 3572.

[37]

M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L. Taberna, M. W. Barsoum, P. Simon, Y. Gogotsi, Nat. Energy 2017, 2, 17105.

[38]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.

[39]

J. Tang, T. Mathis, X. Zhong, X. Xiao, H. Wang, M. Anayee, F. Pan, B. Xu, Y. Gogotsi, Adv. Energy Mater. 2021, 11, 2003025.

[40]

Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo, J. Liang, D. Han, R. Lyu, C. Qi, W. Lv, F. Kang, Q.-H. Yang, Adv. Mater. 2019, 31, 1902432.

[41]

T. Shang, Z. Lin, C. Qi, X. Liu, P. Li, Y. Tao, Z. Wu, D. Li, P. Simon, Q.-H. Yang, Adv. Funct. Mater. 2019, 29, 1903960.

[42]

T. Yun, G. Lee, J. Choi, H. Kim, G. G. Yang, H. J. Lee, J. G. Kim, H. M. Lee, C. M. Koo, J. Lim, S. O. Kim, ACS Nano 2021, 15, 10058.

[43]

X. Huang, J. Huang, D. Yang, P. Wu, Adv. Sci. 2021, 8, 2101664.

[44]

M. Berggren, G. G. Malliaras, Science 2019, 364, 233.

[45]

B. Lu, H. Yuk, S. Lin, N. Jian, K. Qu, J. Xu, X. Zhao, Nat. Commun. 2019, 10, 1043.

[46]

Z. Shen, Z. Zhang, N. Zhang, J. Li, P. Zhou, F. Hu, R. Yu, B. Lu, G. Gu, Adv. Mater. 2022, 34, 2203650.

[47]

Q. Zhao, J. Liu, Z. Wu, X. Xu, H. Ma, J. Hou, Q. Xu, R. Yang, K. Zhang, M. Zhang, H. Yang, W. Peng, X. Liu, C. Zhang, J. Xu, B. Lu, Chem. Eng. J. 2022, 442, 136284.

[48]

Z. Li, G. Ma, R. Ge, F. Qin, X. Dong, W. Meng, T. Liu, J. Tong, F. Jiang, Y. Zhou, K. Li, X. Min, K. Hou, Y. Zhou, Angew. Chem. Int. Ed. 2016, 55, 979.

[49]

M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/