Ultrafast Laser-Induced Excellent Thermoelectric Performance of PEDOT:PSS Films
Xuewen Wang, Yuzhe Feng, Kaili Sun, Nianyao Chai, Bo Mai, Sheng Li, Xiangyu Chen, Wenyu Zhao, Qingjie Zhang
Ultrafast Laser-Induced Excellent Thermoelectric Performance of PEDOT:PSS Films
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is water processable, thermally stable, and highly conductive, PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials. However, the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity, thus cannot be directly utilized for TE applications. Here, a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated. Under optimal conditions, the electrical conductivity of the treated film is increased to 803.1 S cm−1 from 1.2 S cm−1 around three order of magnitude higher, and the power factor is improved to 19.0 μW m−1 K−2, which is enhanced more than 200 times. The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation, reduction of the interplanar stacking distance, and the removal of insulating PSS with increasing the oxidation level of PEDOT, facilitating the charge transportation. This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
electrical conductivity / PEDOT:PSS / thermoelectric film / ultrafast laser irradiation
[1] |
S. Kee , M. A. Haque , D. Corzo , H. N. Alshareef , D. Baran , Adv. Funct. Mater. 2019, 29, 1905426.
|
[2] |
Y. Hao , X. He , L. Wang , X. Qin , G. Chen , J. Yu , Adv. Funct. Mater. 2022, 32, 2109790.
|
[3] |
M. Zebarjadi , K. Esfarjani , M. S. Dresselhaus , Z. F. Ren , G. Chen , Energ. Environ. Sci. 2012, 5, 5147.
|
[4] |
N. Wen , Z. Fan , S. Yang , Y. Zhao , T. Cong , S. Xu , H. Zhang , J. Wang , H. Huang , C. Li , L. Pan , Nano Energy 2020, 78, 105361.
|
[5] |
Y. Xu , Y. Jia , P. Liu , Q. Jiang , D. Hu , Y. Ma , Chem. Eng. J. 2021, 404, 126552.
|
[6] |
L. Zhang , B. Xia , X.-L. Shi , W. D. Liu , Y. Yang , X. Hou , X. Ye , G. Suo , Z. G. Chen , Carbon 2022, 196, 718.
|
[7] |
L. Deng , Y. Liu , Y. Zhang , S. Wang , P. Gao , Adv. Funct. Mater. 2023, 33, 2210770.
|
[8] |
Y. Jiang , T. Liu , Y. Zhou , Adv. Funct. Mater. 2020, 30, 2006213.
|
[9] |
J. F. Ponder Jr. , S. A. Gregory , A. Atassi , A. K. Menon , A. W. Lang , L. R. Savagian , J. R. Reynolds , S. K. Yee , J. Am. Chem. Soc. 2022, 144, 1351.
|
[10] |
A. de Izarra , S. Park , J. Lee , Y. Lansac , Y. H. Jang , J. Am. Chem. Soc. 2018, 140, 5375.
|
[11] |
X. Huang , L. Deng , F. Liu , Z. Liu , G. Chen , Chem. Eng. J. 2021, 417, 129230.
|
[12] |
S. Tu , T. Tian , A. Lena Oechsle , S. Yin , X. Jiang , W. Cao , N. Li , M. A. Scheel , L. K. Reb , S. Hou , A. S. Bandarenka , M. Schwartzkopf , S. V. Roth , P. Müller-Buschbaum , Chem. Eng. J. 2022, 429, 132295.
|
[13] |
C. Yun , J. W. Han , S. Kim , D. C. Lim , H. Jung , S. H. Lee , J. W. Jang , S. Yoo , K. Leo , Y. H. Kim , Mater. Horiz. 2019, 6, 2143.
|
[14] |
A. K. Anbalagan , S. Gupta , M. Chaudhary , R. R. Kumar , Y.-L. Chueh , N.-H. Tai , C.-H. Lee , RSC Adv. 2021, 11, 20752.
|
[15] |
F. Alhashmi Alamer , R. F. Beyari , Materials 2023, 16, 1738.
|
[16] |
N. Chaudhary , A. Singh , D. K. Aswal , M. Bharti , A. Sharma , A. R. Tillu , M. Roy , B. P. Singh , J. Bahadur , V. Putta , A. K. Debnath , Polymer 2020, 202, 122645.
|
[17] |
C. Kerse , H. Kalaycıoğlu , P. Elahi , B. Çetin , D. K. Kesim , Ö. Akçaalan , S. Yavaş , M. D. Aşık , B. Öktem , H. Hoogland , R. Holzwarth , F. Ö. Ilday , Nature 2016, 537, 84.
|
[18] |
X. W. Wang , A. A. Kuchmizhak , X. Li , S. Juodkazis , O. B. Vitrik , Y. N. Kulchin , V. V. Zhakhovsky , P. A. Danilov , A. A. Ionin , S. I. Kudryashov , A. A. Rudenko , N. A. Inogamov , Phys. Rev. Appl. 2017, 8, 044016.
|
[19] |
J. Zhao , N. Chai , X. Chen , Y. Yue , Y.-B. Cheng , J. Qiu , X. Wang , Nanophotonics 2022, 11, 987.
|
[20] |
N. F. Mott , Philos. Mag. 1969, 19, 835.
|
[21] |
M. Li , Z. Bai , X. Chen , C. C. Liu , J. K. Xu , X. Q. Lan , F. X. Jiang , Chin. Phys. B 2022, 31, 027201.
|
[22] |
Z. Fan , P. Li , D. Du , J. Ouyang , Adv. Energy Mater. 2017, 7, 1602116.
|
[23] |
J. Ouyang , Q. Xu , C.-W. Chu , Y. Yang , G. Li , J. Shinar , Polymer 2004, 45, 8443.
|
[24] |
S. Xu , M. Hong , X.-L. Shi , Y. Wang , L. Ge , Y. Bai , L. Wang , M. Dargusch , J. Zou , Z. G. Chen , Chem. Mater. 2019, 31, 5238.
|
[25] |
J. Rajendran , J. Hazard. Mater. 2023, 449, 130979.
|
[26] |
J. Xiong , F. Jiang , H. Shi , J. Xu , C. Liu , W. Zhou , Q. Jiang , Z. Zhu , Y. Hu , ACS Appl. Mater. Interfaces 2015, 7, 14917.
|
[27] |
B. Friedel , P. E. Keivanidis , T. J. K. Brenner , A. Abrusci , C. R. McNeill , R. H. Friend , N. C. Greenham , Macromolecules 2009, 42, 6741.
|
[28] |
M. G. Han , S. H. Foulger , Adv. Mater. 2004, 16, 231.
|
[29] |
N. Kim , S. Lienemann , I. Petsagkourakis , D. Alemu Mengistie , S. Kee , T. Ederth , V. Gueskine , P. Leclère , R. Lazzaroni , X. Crispin , K. Tybrandt , Nat. Commun. 2020, 11, 1424.
|
[30] |
S. Kee , N. Kim , B. S. Kim , S. Park , Y. H. Jang , S. H. Lee , J. Kim , J. Kim , S. Kwon , K. Lee , Adv. Mater. 2016, 28, 8625.
|
[31] |
D. Barpuzary , K. Kim , M. J. Park , ACS Nano 2019, 13, 3953.
|
[32] |
W. Liu , Z. Lei , R. Yang , W. Xing , P. Tao , W. Shang , B. Fu , C. Song , T. Deng , ACS Appl. Mater. Interfaces 2022, 14, 10605.
|
[33] |
Y. Xu , R. Wang , S. Ma , L. Zhou , Y. R. Shen , C. Tian , J. Appl. Phys. 2018, 123, 025301.
|
[34] |
D. Ju , J. Kim , H. Yook , J. W. Han , K. Cho , Nano Energy 2021, 90, 106604.
|
[35] |
D.-J. Yun , J. Jung , Y. M. Sung , H. Ra , J. M. Kim , J. G. Chung , S. Y. Kim , Y. S. Kim , S. Heo , K. H. Kim , Y. J. Jeong , J. Jang , Adv. Electron. Mater. 2020, 6, 2000620.
|
[36] |
M. Du , X. Chen , K. Zhang , ACS Appl. Energy Mater. 2021, 4, 4070.
|
[37] |
I. Paulraj , T.-F. Liang , T.-S. Yang , C. H. Wang , J. L. Chen , Y. W. Wang , C. J. Liu , ACS Appl. Mater. Interfaces 2021, 13, 42977.
|
[38] |
O. Bubnova , Z. U. Khan , A. Malti , S. Braun , M. Fahlman , M. Berggren , X. Crispin , Nat. Mater. 2011, 10, 429.
|
/
〈 | 〉 |