Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries
Wentao Qu, Yong Cai, Baohui Chen, Ming Zhang
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries (ZIBs) by virtue of its high theoretical capacity, high operating voltage, and low price. However, the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable. In this work, heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO2 (δa-MnO2) by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries. Meanwhile, the heterointerface between the disordered amorphous and the crystalline MnO2 of δa-MnO2 is decisive for the formation of oxygen defects. And the experimental results indicate that the manganese dissolution of δa-MnO2 is considerably inhibited during the charge/discharge cycle. Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material, thereby promoting electron transport kinetics as well as inhibiting Mn dissolution. Consequently, the capacity of δa-MnO2 does not degrade after 100 cycles at a current density of 0.5 A g−1 and also 91% capacity retention after 500 cycles at 1 A g−1. This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
electrochemical activation / heterointerface / manganese dissolution inhibition / oxygen defects / zinc ion batteries
[1] |
Q. Xiong , H. He , M. Zhang , Nano-Micro Lett. 2022, 14, 47.
|
[2] |
H. He , J. Lian , C. Chen , Q. Xiong , C. C. Li , M. Zhang , Nano-Micro Lett. 2022, 14, 106.
|
[3] |
C. Huang , X. Zhao , S. Liu , Y. Hao , Q. Tang , A. Hu , Z. Liu , X. Chen , Adv. Mater. 2021, 33, 2100445.
|
[4] |
S. Zhu , Y. Dai , J. Li , C. Ye , W. Zhou , R. Yu , X. Liao , J. Li , W. Zhang , W. Zong , R. Chen , G. He , D. Chao , Q. An , Sci. Bull. 2022, 67, 1882.
|
[5] |
T. Zhang , C. Li , F. Wang , A. Noori , M. F. Mousavi , X. Xia , Y. Zhang , Chem. Rec. 2022, 22, e202200083.
|
[6] |
Q.-N. Zhu , Z.-Y. Wang , J.-W. Wang , X.-Y. Liu , D. Yang , L.-W. Cheng , M.-Y. Tang , Y. Qin , H. Wang , Rare Metals 2021, 40, 309.
|
[7] |
Y. Li , Y.-B. Wang , H. Zhang , P.-C. Zhao , L. Chen , J. Ma , X.-B. Chen , Z.-H. Lin , J.-Y. Qiu , G.-P. Cao , J. Cent. South Univ. 2022, 29, 2837.
|
[8] |
C. Huang , X. Zhao , Y. Hao , Y. Yang , Y. Qian , G. Chang , Y. Zhang , Q. Tang , A. Hu , X. Chen , Adv. Funct. Mater. 2022, 32, 2112091.
|
[9] |
H. Fan , X. Zhang , Y. Zhao , J. Xiao , H. Yuan , G. Wang , Y. Lin , J. Zhang , L. Pan , T. Pan , Y. Liu , Y. Zhang , Energy Environ. Mater. 2023, 6, e12327.
|
[10] |
Y. Zhang , S. Liu , Y. Ji , J. Ma , H. Yu , Adv. Mater. 2018, 30, 1706310.
|
[11] |
H. Song , C. Wang , Energy Environ. Mater. 2023, 6, e12325.
|
[12] |
Z. Wang , Y. Li , J. Wang , R. Ji , H. Yuan , Y. Wang , H. Wang , Carbon Energy 2022, 4, 411.
|
[13] |
C. Liu , Z. Neale , J. Zheng , X. Jia , J. Huang , M. Yan , M. Tian , M. Wang , J. Yang , G. Cao , Energy Environ. Sci. 2019, 12, 2273.
|
[14] |
L. Xu , N. Xu , C. Yan , W. He , X. Wu , G. Diao , M. Chen , J. Electroanal. Chem. 2021, 888, 115196.
|
[15] |
B. Tang , L. Shan , S. Liang , J. Zhou , Energy Environ. Sci. 2019, 12, 3288.
|
[16] |
F. Jing , Y. Liu , Y. Shang , C. Lv , L. Xu , J. Pei , J. Liu , G. Chen , C. Yan , Energy Storage Mater. 2022, 49, 164.
|
[17] |
H. He , J. Lian , C. Chen , Q. Xiong , M. Zhang , Chem. Eng. J. 2021, 421, 129786.
|
[18] |
C. Huang , F. Huang , X. Zhao , Y. Hao , Y. Yang , Y. Qian , G. Chang , Y. Zhang , Q. Tang , A. Hu , X. Chen , Adv. Funct. Mater. 2023, 33, 2210197.
|
[19] |
Y. Fu , Q. Wei , G. Zhang , X. Wang , J. Zhang , Y. Hu , D. Wang , L. Zuin , T. Zhou , Y. Wu , S. Sun , Adv. Energy Mater. 2018, 8, 1801445.
|
[20] |
S. Islam , M. H. Alfaruqi , D. Y. Putro , S. Park , S. Kim , S. Lee , M. S. Ahmed , V. Mathew , Y.-K. Sun , J.-Y. Hwang , J. Kim , Adv. Sci. 2021, 8, 2002636.
|
[21] |
G. Fang , C. Zhu , M. Chen , J. Zhou , B. Tang , X. Cao , X. Zheng , A. Pan , S. Liang , Adv. Funct. Mater. 2019, 29, 1808375.
|
[22] |
T. Sun , Q. Nian , S. Zheng , J. Shi , Z. Tao , Small 2020, 16, 2000597.
|
[23] |
N. Liu , B. Li , Z. He , L. Dai , H. Wang , L. Wang , J. Energy Chem. 2021, 59, 134.
|
[24] |
Y. Zeng , X. F. Lu , S. L. Zhang , D. Luan , S. Li , X. W. Lou , Angew. Chem. Int. Ed. 2021, 60, 22189.
|
[25] |
Z. Tie , Z. Niu , Angew. Chem. Int. Ed. 2020, 59, 21293.
|
[26] |
Y. Gan , C. Wang , J. Li , J. Zheng , Z. Wu , L. Lv , P. Liang , H. Wan , J. Zhang , H. Wang , Front. Chem. 2022, 9, 9.
|
[27] |
Z. Zhang , W. Li , Y. Shen , R. Wang , H. Li , M. Zhou , W. Wang , K. Wang , K. Jiang , J. Energy Storage 2022, 45, 103729.
|
[28] |
H. Ren , J. Zhao , L. Yang , Q. Liang , S. Madhavi , Q. Yan , Nano Res. 2019, 12, 1347.
|
[29] |
L. Chen , Z. Yang , F. Cui , J. Meng , Y. Jiang , J. Long , X. Zeng , Mater. Chem. Front. 2020, 4, 213.
|
[30] |
G. Liu , H. Huang , R. Bi , X. Xiao , T. Ma , L. Zhang , J. Mater. Chem. A 2019, 7, 20806.
|
[31] |
C. Zhu , G. Fang , S. Liang , Z. Chen , Z. Wang , J. Ma , H. Wang , B. Tang , X. Zheng , J. Zhou , Energy Storage Mater. 2020, 24, 394.
|
[32] |
P. Hu , M. Yan , X. Wang , C. Han , L. He , X. Wei , C. Niu , K. Zhao , X. Tian , Q. Wei , Z. Li , L. Mai , Nano Lett. 2016, 16, 1523.
|
[33] |
L. Yan , C. Zhu , J. Hao , X. Liang , Y. Bai , Q. Hu , B. Tan , B. Liu , X. Zou , B. Xiang , Adv. Funct. Mater. 2021, 31, 2102693.
|
[34] |
X. Chen , W. Li , Y. Xu , Z. Zeng , H. Tian , M. Velayutham , W. Shi , W. Li , C. Wang , D. Reed , V. V. Khramtsov , X. Li , X. Liu , Nano Energy 2020, 75, 104869.
|
[35] |
J. Peng , W. Zhang , S. Wang , Y. Huang , J.-Z. Wang , H.-K. Liu , S.-X. Dou , S.-L. Chou , Adv. Funct. Mater. 2022, 32, 2111720.
|
[36] |
Z. Wang , Y. Song , J. Wang , Y. Lin , J. Meng , W. Cui , X.-X. Liu , Angew. Chem. Int. Ed. 2023, 62, e202216290.
|
[37] |
Y. Cai , R. Chua , S. Huang , H. Ren , M. Srinivasan , Chem. Eng. J. 2020, 396, 125221.
|
[38] |
M. Wang , T. U. Dissanayake , C. Park , K. Gaskell , T. J. Woehl , J. Am. Chem. Soc. 2019, 141, 13516.
|
[39] |
C. Chen , M. Shi , Y. Zhao , C. Yang , L. Zhao , C. Yan , Chem. Eng. J. 2021, 422, 130375.
|
[40] |
L. Liu , Y.-C. Wu , L. Huang , K. Liu , B. Duployer , P. Rozier , P.-L. Taberna , P. Simon , Adv. Energy Mater. 2021, 11, 2101287.
|
[41] |
H. Zhang , J. Wei , Y. Yan , Q. Guo , L. Xie , Z. Yang , J. He , W. Qi , Z. Cao , X. Zhao , P. Pan , H. Li , K. Zhang , J. Zhao , X. Li , P. Zhang , K. W. Shah , J. Power Sources 2020, 450, 227616.
|
[42] |
J. Huang , Z. Wang , M. Hou , X. Dong , Y. Liu , Y. Wang , Y. Xia , Nat. Commun. 2018, 9, 2906.
|
[43] |
S. Wang , X. Zhao , H. Chen , J. Guo , R. Liu , D. A. Yang , EcoMat 2022, 4, e12249.
|
[44] |
X.-Z. Zhai , J. Qu , J. Wang , W. Chang , H.-J. Liu , Y.-H. Liu , H. Yuan , X. Li , Z.-Z. Yu , Energy Storage Mater. 2021, 42, 753.
|
[45] |
D. Wang , L. Wang , G. Liang , H. Li , Z. Liu , Z. Tang , J. Liang , C. Zhi , ACS Nano 2019, 13, 10643.
|
[46] |
Y. Zhao , P. Zhang , J. Liang , X. Xia , L. Ren , L. Song , W. Liu , X. Sun , Energy Storage Mater. 2022, 47, 424.
|
[47] |
G. Cui , Y. Zeng , J. Wu , Y. Guo , X. Gu , X. W. Lou , Adv. Sci. 2022, 9, 2106067.
|
[48] |
H. Tang , W. Chen , N. Li , Z. Hu , L. Xiao , Y. Xie , L. Xi , L. Ni , Y. Zhu , Energy Storage Mater. 2022, 48, 335.
|
[49] |
S. Sun , J. Li , C. Xu , T. Zhai , H. Xia , J. Mater. Chem. A 2022, 10, 19231.
|
[50] |
J. Cao , D. Zhang , Y. Yue , X. Wang , T. Pakornchote , T. Bovornratanaraks , X. Zhang , Z.-S. Wu , J. Qin , Nano Energy 2021, 84, 105876.
|
[51] |
Z. Yao , W. Zhang , X. Ren , Y. Yin , Y. Zhao , Z. Ren , Y. Sun , Q. Lei , J. Wang , L. Wang , T. Ji , P. Huai , W. Wen , X. Li , D. Zhu , R. Tai , ACS Nano 2022, 16, 12095.
|
[52] |
S. Li , Y. Liu , X. Zhao , Q. Shen , W. Zhao , Q. Tan , N. Zhang , P. Li , L. Jiao , X. Qu , Adv. Mater. 2021, 33, 2007480.
|
[53] |
X. Wang , Y. Liu , Z. Wei , J. Hong , H. Liang , M. Song , Y. Zhou , X. Huang , Adv. Mater. 2022, 34, 2206812.
|
[54] |
Z. Zhong , J. Li , L. Li , X. Xi , Z. Luo , G. Fang , S. Liang , X. Wang , Energy Storage Mater. 2022, 46, 165.
|
[55] |
X. Chen , P. Ruan , X. Wu , S. Liang , J. Zhou , Acta Phys. Chim. Sin. 2022, 38, 2111003.
|
[56] |
P. Ruan , X. Xu , D. Zheng , X. Chen , X. Yin , S. Liang , X. Wu , W. Shi , X. Cao , J. Zhou , ChemSusChem 2022, 15, e202201118.
|
[57] |
T. He , S. Weng , Y. Ye , J. Cheng , X. Wang , X. Wang , B. Wang , Energy Storage Mater. 2021, 38, 389.
|
[58] |
G. Huo , X.-W. Wang , Z.-B. Zhang , Z. Song , X.-M. Kang , M.-X. Chen , Q. Wang , X.-Z. Fu , J.-L. Luo , J. Energy Chem. 2020, 51, 81.
|
[59] |
Y. Xu , H. Li , B. Sun , P. Qiao , L. Ren , G. Tian , B. Jiang , K. Pan , W. Zhou , Chem. Eng. J. 2020, 379, 122295.
|
[60] |
C. Li , C. Zheng , F. Cao , Y. Zhang , X. Xia , J. Electron. Mater. 2022, 51, 4107.
|
[61] |
B. Jia , W. Chen , J. Luo , Z. Yang , L. Li , L. Guo , Adv. Mater. 2020, 32, 1906582.
|
[62] |
M. Liu , Q. Chen , X. Cao , D. Tan , J. Ma , J. Zhang , J. Am. Chem. Soc. 2022, 144, 21683.
|
/
〈 | 〉 |