Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries

Nibagani Naresh , Suyoon Eom , Sang Jun Lee , Su Hwan Jeong , Ji-Won Jung , Young Hwa Jung , Joo-Hyung Kim

Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12640

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12640 DOI: 10.1002/eem2.12640
RESEARCH ARTICLE

Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries

Author information +
History +
PDF

Abstract

The layered δ-MnO2 (dMO) is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance (~0.7 nm), high capacity, and low cost; however, such cathodes suffer from structural degradation during the long-term cycling process, leading to capacity fading. In this study, a Co-doped dMO composite with reduced graphene oxide (GC-dMO) is developed using a simple cost-effective hydrothermal method. The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites. It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge, which enhances the intercalation of Zn2+ ions, H2O molecules in the layered structure. The GC-dMO cathode exhibits an excellent capacity of 302 mAh g−1 at a current density of 100 mA g−1 after 100 cycles as compared with the dMO cathode (159 mAh g−1). The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness, and maintains structural stability, which facilitates the easy reverse intercalation and de-intercalation of Zn2+ ions and H2O molecules. Therefore, GC-dMO is a promising cathode material for large-scale aqueous ZIBs.

Keywords

aqueous zinc-ion batteries / birnessite / buserite / disordered structure / phase transformation

Cite this article

Download citation ▾
Nibagani Naresh, Suyoon Eom, Sang Jun Lee, Su Hwan Jeong, Ji-Won Jung, Young Hwa Jung, Joo-Hyung Kim. Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Materials, 2024, 7(3): 12640 DOI:10.1002/eem2.12640

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. W. Choi , D. Aurbach , Nat. Rev. Mater. 2016,

[2]

D. Bradley , Educ. Chem. 2010, 47, 124.

[3]

J. Hassoun , K. S. Lee , Y. K. Sun , B. Scrosati , J. Am. Chem. Soc. 2011, 133, 3139.

[4]

J. M. Tarascon , M. Armand , Nature 2001, 414, 359.

[5]

N. Yabuuchi , K. Kubota , M. Dahbi , S. Komada , Chem. Rev. 2014, 114, 11636.

[6]

N. Nitta , F. Wu , J. T. Lee , G. Yushin , Mater. Today 2015, 18, 252.

[7]

N. Zhang , F. Cheng , Y. Liu , Q. Zhao , K. Lei , C. Chen , X. Liu , J. Chen , J. Am. Chem. Soc. 2016, 138, 12894.

[8]

Y. Cheng , L. Luo , L. Zhong , J. Chen , B. Li , W. Wang , S. X. Mao , C. Wang , V. L. Sprenkle , G. Li , J. Liu , A. C. S. Appl , Mater. Interfaces. 2016, 8, 13673.

[9]

R. Trócoli , F. La Mantia , ChemSusChem 2015, 8, 481.

[10]

P. Yu , Y. Zeng , H. Zhang , M. Yu , Y. Tong , X. Lu , Small 2019,

[11]

Y. Yang , Y. Tang , G. Fang , L. Shan , J. Guo , W. Zhang , C. Wang , L. Wang , J. Zhou , S. Liang , Energ. Environ. Sci. 2018, 11, 3157.

[12]

H. Ao , Y. Zhao , J. Zhou , W. Cai , X. Zhang , Y. Zhu , Y. Qian , J. Mater. Chem. A 2019, 7, 18708.

[13]

M. Song , H. Tan , D. Chao , H. J. Fan , Adv. Funct. Mater. 2018,

[14]

F. Wan , Y. Zhang , L. Zhang , D. Liu , C. Wang , L. Song , Z. Niu , J. Chen , Angew. Chem. Int. Ed. 2019, 58, 7062.

[15]

N. Zhang , Y. Dong , M. Jia , X. Bian , Y. Wang , M. Qiu , J. Xu , Y. Liu , L. Jiao , F. Cheng , ACS Energy Lett. 2018, 3, 1366.

[16]

J. Zhou , L. Shan , Z. Wu , X. Guo , G. Fang , S. Liang , Chem. Commun. 2018, 54, 4457.

[17]

R. Li , H. Zhang , Q. Zheng , X. Li , J. Mater. Chem. A 2020, 8, 5186.

[18]

Y. Zeng , X. F. Lu , S. L. Zhang , D. Luan , S. Li , X. W. Lou , Angew. Chem. Int. Ed. 2021, 60, 22189.

[19]

Z. Li , T. Liu , R. Meng , L. Gao , Y. Zou , P. Peng , Y. Shao , X. Liang , Energy Environ. Mater. 2021, 4, 111.

[20]

T. H. Wu , Y. Q. Lin , Z. D. Althouse , N. Liu , A. C. S. Appl , Energy Mater. 2021, 4, 12267.

[21]

M. H. Alfaruqi , V. Mathew , J. Gim , S. Kim , J. Song , J. P. Baboo , S. H. Choi , J. Kim , Chem. Mater. 2015, 27, 3609.

[22]

J. Huang , Z. Wang , M. Hou , X. Dong , Y. Liu , Y. Wang , Y. Xia , Nat. Commun. 2018, 9, 2906.

[23]

X. Duan , J. Yang , H. Gao , J. Ma , L. Jiao , W. Zheng , CrstEngComm 2012, 14, 4196.

[24]

B. Lin , X. Zhu , L. Fang , X. Liu , S. Li , T. Zhai , L. Xue , Q. Guo , J. Xu , H. Xia , Adv. Mater. 2019,

[25]

C. Hong , G. Yang , C. Wang , ACS Appl. Mater. Interfaces 2021, 13, 54088.

[26]

T. Xiong , Y. Zhang , W. S. V. Lee , J. Xue , Adv. Energy Mater. 2020, 10, 2001769.

[27]

T. Xing , Z. G. Yu , H. Wu , Y. Du , Q. Xie , J. Chen , Y.-W. Zhang , Adv. Energy Mater. 2019, 9, 1803815.

[28]

Y. Jiao , L. Kang , J. Berry-Gair , K. McColl , J. Li , H. Dong , H. Jiang , R. Wang , F. Corà , D. J. L. Brett , G. He , I. P. Parkin , J. Mater. Chem. A 2020, 8, 22075.

[29]

S. Ding , L. Liu , R. Qin , X. Chen , A. Song , J. Li , S. Li , Q. Zhao , F. Pan , ACS Appl. Mater. Interfaces 2021, 13, 22466.

[30]

C. Xu , B. Li , H. Du , F. Kang , Angew. Chem. Int. Ed. 2012, 51, 933.

[31]

B. Lee , H. R. Lee , H. Kim , K. Y. Chung , B. W. Cho , S. H. Oh , Chem. Commun. 2015, 51, 9265.

[32]

N. Zhang , F. Cheng , J. Liu , L. Wang , X. Long , X. Liu , F. Li , J. Chen , Nat. Commun. 2017,

[33]

M. H. Alfaruqi , S. Islam , D. Y. Putro , V. Mathew , S. Kim , J. Jo , S. Kim , Y. K. Sun , K. Kim , J. Kim , Electrochim. Acta 2018,

[34]

K. W. Nam , H. Kim , J. H. Choi , J. W. Choi , Energ. Environ. Sci. 2019, 12, 1999.

[35]

T. Sun , Q. Nian , S. Zheng , J. Shi , Z. Tao , Small 2020,

[36]

J. Chen , J. Liang , Y. Zhou , Z. Sha , S. Lim , F. Huang , Z. Han , S. A. Brown , L. Cao , D. W. Wang , C. H. Wang , J. Mater. Chem. A 2021, 9, 575.

[37]

J. Luo , Q. Zhang , A. Huang , O. Giraldo , S. L. Suib , Inorg. Chem. 1999, 38, 6106.

[38]

Y. Ren , F. Meng , B. Siwen Zhang , H. L. Ping , Carbon Energy. 2022, 4, 446.

[39]

Y. Zeng , X. Zhang , Y. Meng , M. Yu , J. Yi , Y. Wu , X. Lu , Y. Tong , Adv. Mater. 2017,

[40]

H. W. Nesbitt , D. Banerjee , Am. Mineral. 1998, 83, 305.

[41]

Z. Xia , Y. Zhu , W. Zhang , T. Hu , T. Chen , J. Zhang , Y. Liu , H. Ma , H. Fang , L. Li , J. Alloys Compd. 2020, 824, 153950.

[42]

J. Huang , Y. Dai , K. Singewald , C. C. Liu , S. Saxena , H. Zhang , Chem. Eng. J. 2019, 370, 906.

[43]

Y. Kumar , S. Chopra , A. Gupta , Y. Kumar , S. J. Uke , S. P. Mardikar , Mater. Sci. Energy Technol. 2020, 3, 566.

[44]

D. C. Golden , C. C. Chen , J. B. Dixon , Clays Clay Miner. 1987, 35, 271.

[45]

S. Tepavcevic , H. Xiong , V. R. Stamenkovic , X. Zuo , M. Balasubramanian , V. B. Prakapenka , C. S. Johnson , T. Rajh , ACS Nano 2012, 6, 530.

[46]

H. Pan , Y. Shao , P. Yan , Y. Cheng , K. S. Han , Z. Nie , C. Wang , J. Yang , X. Li , P. Bhattacharya , K. T. Mueller , J. Liu , Nat. Energy 2016,

[47]

K. Han , F. An , F. Yan , H. Chen , Q. Wan , Y. Liu , P. Li , X. Qu , J. Mater. Chem. A 2021, 9, 15637.

[48]

L. Peng , X. Ren , Z. Liang , Y. Sun , Y. Zhao , J. Zhang , Z. Yao , Z. Ren , Z. Li , J. Wang , B. Zhu , Y. Gao , W. Wen , Y. Huang , X. Li , R. Tai , K. Yang , D. Zhu , Energy Storage Mater. 2021, 42, 34.

[49]

B. Xiao , Carbon Energy. 2020, 2, 251.

[50]

X. Shan , F. Guo , D. S. Charles , Z. Lebens-Higgins , S. Abdel Razek , J. Wu , W. Xu , W. Yang , K. L. Page , J. C. Neuefeind , M. Feygenson , L. F. J. Piper , X. Teng , Nat. Commun. 2019,

[51]

R. Guo , L. Ni , H. Zhang , X. Gao , R. Momen , A. Massoudi , G. Zou , H. Hou , X. Ji , ACS Appl. Energy Mater. 2021, 4, 10940.

[52]

V. Augustyn , J. Come , M. A. Lowe , J. W. Kim , P. L. Taberna , S. H. Tolbert , H. D. Abruña , P. Simon , B. Dunn , Nat. Mater. 2013, 12, 518.

[53]

B. Deka Boruah , A. Mathieson , S. K. Park , X. Zhang , B. Wen , L. Tan , A. Boies , M. De Volder , Energy Mater. 2021,

[54]

W. Weppner , R. A. Huggins , J. Solid State Chem. 1977, 22, 297.

[55]

W. Shi , B. Yin , Y. Yang , M. B. Sullivan , J. Wang , Y. W. Zhang , Z. G. Yu , W. S. V. Lee , J. Xue , ACS Nano 2021, 15, 1273.

[56]

C. Luo , L. Xiao , X. Wu , Mater. Adv. 2022, 3, 604.

RIGHTS & PERMISSIONS

2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.

AI Summary AI Mindmap
PDF

366

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/