Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries

Nibagani Naresh, Suyoon Eom, Sang Jun Lee, Su Hwan Jeong, Ji-Won Jung, Young Hwa Jung, Joo-Hyung Kim

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12640. DOI: 10.1002/eem2.12640
RESEARCH ARTICLE

Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries

Author information +
History +

Abstract

The layered δ-MnO2 (dMO) is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance (~0.7 nm), high capacity, and low cost; however, such cathodes suffer from structural degradation during the long-term cycling process, leading to capacity fading. In this study, a Co-doped dMO composite with reduced graphene oxide (GC-dMO) is developed using a simple cost-effective hydrothermal method. The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites. It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge, which enhances the intercalation of Zn2+ ions, H2O molecules in the layered structure. The GC-dMO cathode exhibits an excellent capacity of 302 mAh g−1 at a current density of 100 mA g−1 after 100 cycles as compared with the dMO cathode (159 mAh g−1). The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness, and maintains structural stability, which facilitates the easy reverse intercalation and de-intercalation of Zn2+ ions and H2O molecules. Therefore, GC-dMO is a promising cathode material for large-scale aqueous ZIBs.

Keywords

aqueous zinc-ion batteries / birnessite / buserite / disordered structure / phase transformation

Cite this article

Download citation ▾
Nibagani Naresh, Suyoon Eom, Sang Jun Lee, Su Hwan Jeong, Ji-Won Jung, Young Hwa Jung, Joo-Hyung Kim. Disordered Structure and Reversible Phase Transformation from K-Birnessite to Zn-Buserite Enable High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Materials, 2024, 7(3): 12640 https://doi.org/10.1002/eem2.12640

References

[1]
J. W. Choi , D. Aurbach , Nat. Rev. Mater. 2016, https://www.nature.com/articles/natrevmats201613/.
[2]
D. Bradley , Educ. Chem. 2010, 47, 124.
[3]
J. Hassoun , K. S. Lee , Y. K. Sun , B. Scrosati , J. Am. Chem. Soc. 2011, 133, 3139.
[4]
J. M. Tarascon , M. Armand , Nature 2001, 414, 359.
[5]
N. Yabuuchi , K. Kubota , M. Dahbi , S. Komada , Chem. Rev. 2014, 114, 11636.
[6]
N. Nitta , F. Wu , J. T. Lee , G. Yushin , Mater. Today 2015, 18, 252.
[7]
N. Zhang , F. Cheng , Y. Liu , Q. Zhao , K. Lei , C. Chen , X. Liu , J. Chen , J. Am. Chem. Soc. 2016, 138, 12894.
[8]
Y. Cheng , L. Luo , L. Zhong , J. Chen , B. Li , W. Wang , S. X. Mao , C. Wang , V. L. Sprenkle , G. Li , J. Liu , A. C. S. Appl , Mater. Interfaces. 2016, 8, 13673.
[9]
R. Trócoli , F. La Mantia , ChemSusChem 2015, 8, 481.
[10]
P. Yu , Y. Zeng , H. Zhang , M. Yu , Y. Tong , X. Lu , Small 2019,
CrossRef Google scholar
[11]
Y. Yang , Y. Tang , G. Fang , L. Shan , J. Guo , W. Zhang , C. Wang , L. Wang , J. Zhou , S. Liang , Energ. Environ. Sci. 2018, 11, 3157.
[12]
H. Ao , Y. Zhao , J. Zhou , W. Cai , X. Zhang , Y. Zhu , Y. Qian , J. Mater. Chem. A 2019, 7, 18708.
[13]
M. Song , H. Tan , D. Chao , H. J. Fan , Adv. Funct. Mater. 2018,
CrossRef Google scholar
[14]
F. Wan , Y. Zhang , L. Zhang , D. Liu , C. Wang , L. Song , Z. Niu , J. Chen , Angew. Chem. Int. Ed. 2019, 58, 7062.
[15]
N. Zhang , Y. Dong , M. Jia , X. Bian , Y. Wang , M. Qiu , J. Xu , Y. Liu , L. Jiao , F. Cheng , ACS Energy Lett. 2018, 3, 1366.
[16]
J. Zhou , L. Shan , Z. Wu , X. Guo , G. Fang , S. Liang , Chem. Commun. 2018, 54, 4457.
[17]
R. Li , H. Zhang , Q. Zheng , X. Li , J. Mater. Chem. A 2020, 8, 5186.
[18]
Y. Zeng , X. F. Lu , S. L. Zhang , D. Luan , S. Li , X. W. Lou , Angew. Chem. Int. Ed. 2021, 60, 22189.
[19]
Z. Li , T. Liu , R. Meng , L. Gao , Y. Zou , P. Peng , Y. Shao , X. Liang , Energy Environ. Mater. 2021, 4, 111.
[20]
T. H. Wu , Y. Q. Lin , Z. D. Althouse , N. Liu , A. C. S. Appl , Energy Mater. 2021, 4, 12267.
[21]
M. H. Alfaruqi , V. Mathew , J. Gim , S. Kim , J. Song , J. P. Baboo , S. H. Choi , J. Kim , Chem. Mater. 2015, 27, 3609.
[22]
J. Huang , Z. Wang , M. Hou , X. Dong , Y. Liu , Y. Wang , Y. Xia , Nat. Commun. 2018, 9, 2906.
[23]
X. Duan , J. Yang , H. Gao , J. Ma , L. Jiao , W. Zheng , CrstEngComm 2012, 14, 4196.
[24]
B. Lin , X. Zhu , L. Fang , X. Liu , S. Li , T. Zhai , L. Xue , Q. Guo , J. Xu , H. Xia , Adv. Mater. 2019,
CrossRef Google scholar
[25]
C. Hong , G. Yang , C. Wang , ACS Appl. Mater. Interfaces 2021, 13, 54088.
[26]
T. Xiong , Y. Zhang , W. S. V. Lee , J. Xue , Adv. Energy Mater. 2020, 10, 2001769.
[27]
T. Xing , Z. G. Yu , H. Wu , Y. Du , Q. Xie , J. Chen , Y.-W. Zhang , Adv. Energy Mater. 2019, 9, 1803815.
[28]
Y. Jiao , L. Kang , J. Berry-Gair , K. McColl , J. Li , H. Dong , H. Jiang , R. Wang , F. Corà , D. J. L. Brett , G. He , I. P. Parkin , J. Mater. Chem. A 2020, 8, 22075.
[29]
S. Ding , L. Liu , R. Qin , X. Chen , A. Song , J. Li , S. Li , Q. Zhao , F. Pan , ACS Appl. Mater. Interfaces 2021, 13, 22466.
[30]
C. Xu , B. Li , H. Du , F. Kang , Angew. Chem. Int. Ed. 2012, 51, 933.
[31]
B. Lee , H. R. Lee , H. Kim , K. Y. Chung , B. W. Cho , S. H. Oh , Chem. Commun. 2015, 51, 9265.
[32]
N. Zhang , F. Cheng , J. Liu , L. Wang , X. Long , X. Liu , F. Li , J. Chen , Nat. Commun. 2017,
CrossRef Google scholar
[33]
M. H. Alfaruqi , S. Islam , D. Y. Putro , V. Mathew , S. Kim , J. Jo , S. Kim , Y. K. Sun , K. Kim , J. Kim , Electrochim. Acta 2018,
CrossRef Google scholar
[34]
K. W. Nam , H. Kim , J. H. Choi , J. W. Choi , Energ. Environ. Sci. 2019, 12, 1999.
[35]
T. Sun , Q. Nian , S. Zheng , J. Shi , Z. Tao , Small 2020,
CrossRef Google scholar
[36]
J. Chen , J. Liang , Y. Zhou , Z. Sha , S. Lim , F. Huang , Z. Han , S. A. Brown , L. Cao , D. W. Wang , C. H. Wang , J. Mater. Chem. A 2021, 9, 575.
[37]
J. Luo , Q. Zhang , A. Huang , O. Giraldo , S. L. Suib , Inorg. Chem. 1999, 38, 6106.
[38]
Y. Ren , F. Meng , B. Siwen Zhang , H. L. Ping , Carbon Energy. 2022, 4, 446.
[39]
Y. Zeng , X. Zhang , Y. Meng , M. Yu , J. Yi , Y. Wu , X. Lu , Y. Tong , Adv. Mater. 2017,
CrossRef Google scholar
[40]
H. W. Nesbitt , D. Banerjee , Am. Mineral. 1998, 83, 305.
[41]
Z. Xia , Y. Zhu , W. Zhang , T. Hu , T. Chen , J. Zhang , Y. Liu , H. Ma , H. Fang , L. Li , J. Alloys Compd. 2020, 824, 153950.
[42]
J. Huang , Y. Dai , K. Singewald , C. C. Liu , S. Saxena , H. Zhang , Chem. Eng. J. 2019, 370, 906.
[43]
Y. Kumar , S. Chopra , A. Gupta , Y. Kumar , S. J. Uke , S. P. Mardikar , Mater. Sci. Energy Technol. 2020, 3, 566.
[44]
D. C. Golden , C. C. Chen , J. B. Dixon , Clays Clay Miner. 1987, 35, 271.
[45]
S. Tepavcevic , H. Xiong , V. R. Stamenkovic , X. Zuo , M. Balasubramanian , V. B. Prakapenka , C. S. Johnson , T. Rajh , ACS Nano 2012, 6, 530.
[46]
H. Pan , Y. Shao , P. Yan , Y. Cheng , K. S. Han , Z. Nie , C. Wang , J. Yang , X. Li , P. Bhattacharya , K. T. Mueller , J. Liu , Nat. Energy 2016,
CrossRef Google scholar
[47]
K. Han , F. An , F. Yan , H. Chen , Q. Wan , Y. Liu , P. Li , X. Qu , J. Mater. Chem. A 2021, 9, 15637.
[48]
L. Peng , X. Ren , Z. Liang , Y. Sun , Y. Zhao , J. Zhang , Z. Yao , Z. Ren , Z. Li , J. Wang , B. Zhu , Y. Gao , W. Wen , Y. Huang , X. Li , R. Tai , K. Yang , D. Zhu , Energy Storage Mater. 2021, 42, 34.
[49]
B. Xiao , Carbon Energy. 2020, 2, 251.
[50]
X. Shan , F. Guo , D. S. Charles , Z. Lebens-Higgins , S. Abdel Razek , J. Wu , W. Xu , W. Yang , K. L. Page , J. C. Neuefeind , M. Feygenson , L. F. J. Piper , X. Teng , Nat. Commun. 2019,
CrossRef Google scholar
[51]
R. Guo , L. Ni , H. Zhang , X. Gao , R. Momen , A. Massoudi , G. Zou , H. Hou , X. Ji , ACS Appl. Energy Mater. 2021, 4, 10940.
[52]
V. Augustyn , J. Come , M. A. Lowe , J. W. Kim , P. L. Taberna , S. H. Tolbert , H. D. Abruña , P. Simon , B. Dunn , Nat. Mater. 2013, 12, 518.
[53]
B. Deka Boruah , A. Mathieson , S. K. Park , X. Zhang , B. Wen , L. Tan , A. Boies , M. De Volder , Energy Mater. 2021,
CrossRef Google scholar
[54]
W. Weppner , R. A. Huggins , J. Solid State Chem. 1977, 22, 297.
[55]
W. Shi , B. Yin , Y. Yang , M. B. Sullivan , J. Wang , Y. W. Zhang , Z. G. Yu , W. S. V. Lee , J. Xue , ACS Nano 2021, 15, 1273.
[56]
C. Luo , L. Xiao , X. Wu , Mater. Adv. 2022, 3, 604.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/