Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N2 to NH3
Yanjiao Wei, Xinyu Wang, Mengjie Sun, Min Ma, Jian Tian, Minhua Shao
Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N2 to NH3
At present, the research on highly active and stable nitrogen reduction reaction catalysts is still challenging work for the electrosynthesis of ammonia (NH3). Herein, we synthesized atomically dispersed zinc active sites supported on N-doped carbon nanosheets (Zn/NC NSs) as an efficient nitrogen reduction reaction catalyst, which achieves a high ammonia yield of 46.62 μg h−1 mg−1cat. at −0.85 V (vs RHE) and Faradaic efficiency of 95.8% at −0.70 V (vs RHE). In addition, Zn/NC NSs present great stability and selectivity, and there is no significant change in NH3 rate and Faradaic efficiencies after multiple cycles. The structural characterization shows that the active center in the nitrogen reduction reaction process is the Zn–N4 sites in the catalyst. DFT calculation confirms that Zn/NC with Zn–N4 configuration has a lower energy barrier for the formation of *NNH intermediate compared with pure N-doped carbon nanosheets (N-C NSs), thus promoting the hydrogenation kinetics in the whole nitrogen reduction reaction process.
electrocatalysis / nitrogen reduction / single-atom catalyst / Zn–N4
[1] |
D. Liu , M. Chen , X. Du , H. Ai , K. H. Lo , S. Wang , S. Chen , G. Xing , X. Wang , H. Pan , Adv. Funct. Mater. 2021, 31, 2008983.
|
[2] |
J. Chen , Y. Kang , W. Zhang , Z. Zhang , Y. Chen , Y. Yang , L. Duan , Y. Li , W. Li , Angew. Chem. Int. Ed. 2022, 61, e202203022.
|
[3] |
B. Sun , P. Qiu , Z. Liang , Y. Xue , X. Zhang , L. Yang , H. Cui , J. Tian , Chem. Eng. J. 2021, 406, 127177.
|
[4] |
Z. Xi , K. Shi , X. Xu , P. Jing , B. Liu , R. Gao , J. Zhang , Adv. Sci. 2022, 9, 2104245.
|
[5] |
W. Zhang , K. Mao , J. Low , H. Liu , Y. Bo , J. Ma , Q. Liu , Y. Jiang , J. Yang , Y. Pan , Z. Qi , R. Long , L. Song , Y. Xiong , Nano Res. 2021, 14, 3234.
|
[6] |
Y. Wang , T. J. Meyer , Chem 2019, 5, 496.
|
[7] |
J. Zhao , X. Liu , X. Ren , X. Sun , D. Tian , Q. Wei , D. Wu , Appl. Catal. B Environ. 2021, 284, 119746.
|
[8] |
D. Bao , Q. Zhang , F.-L. Meng , H.-X. Zhong , M.-M. Shi , Y. Zhang , J.-M. Yan , Q. Jiang , X.-B. Zhang , Adv. Mater. 2017, 29, 1604799.
|
[9] |
Y. Xue , C. Ma , Q. Yang , X. Wang , S. An , X. Zhang , J. Tian , Chem. Eng. J. 2023, 457, 141146.
|
[10] |
X. Chen , S. Zhang , X. Qian , Z. Liang , Y. Xue , X. Zhang , J. Tian , Y. Han , M. Shao , Appl. Catal. B Environ. 2022, 310, 121277.
|
[11] |
T. Oshikiri , K. Ueno , H. Misawa , Angew. Chem. Int. Ed. 2016, 55, 3942.
|
[12] |
L. Wang , M. Xia , H. Wang , K. Huang , C. Qian , C. T. Maravelias , G. A. Ozin , Joule 2018, 2, 1055.
|
[13] |
X. Qian , C. Ma , U. B. Shahid , M. Sun , X. Zhang , J. Tian , M. Shao , ACS Catal. 2022, 12, 6385.
|
[14] |
J. Zhao , L. Zhang , X.-Y. Xie , X. Li , Y. Ma , Q. Liu , W.-H. Fang , X. Shi , G. Cui , X. Sun , J. Mater. Chem. A 2018, 6, 24031.
|
[15] |
A. R. Singh , B. A. Rohr , J. A. Schwalbe , M. Cargnello , K. Chan , T. F. Jaramillo , I. Chorkendorff , J. K. Nørskov , ACS Catal. 2017, 7, 706.
|
[16] |
Z. Geng , Y. Liu , X. Kong , P. Li , K. Li , Z. Liu , J. Du , M. Shu , R. Si , J. Zeng , Adv. Mater. 2018, 30, 1803498.
|
[17] |
X. Xu , B. Sun , Z. Liang , H. Cui , J. Tian , ACS Appl. Mater. Interfaces 2020, 12, 26060.
|
[18] |
V. Kordali , G. Kyriacou , C. Lambrou , Chem. Commun. 2000, 17, 1673.
|
[19] |
Y. Zhang , L. Jiao , W. Yang , C. Xie , H. L. Jiang , Angew. Chem. Int. Ed. Engl. 2021, 60, 7607.
|
[20] |
C.-Z. Yuan , K. Liang , X.-M. Xia , Z. K. Yang , Y.-F. Jiang , T. Zhao , C. Lin , T.-Y. Cheang , S.-L. Zhong , A.-W. Xu , Cat. Sci. Technol. 2019, 9, 3669.
|
[21] |
R. Walczak , B. Kurpil , A. Savateev , T. Heil , J. Schmidt , Q. Qin , M. Antonietti , M. Oschatz , Angew. Chem. Int. Ed. Engl. 2018, 57, 10765.
|
[22] |
L. Han , X. Liu , J. Chen , R. Lin , H. Liu , F. Lü , S. Bak , Z. Liang , S. Zhao , E. Stavitski , J. Luo , R. R. Adzic , H. L. Xin , Angew. Chem. Int. Ed. Engl. 2019, 58, 2321.
|
[23] |
J. Yu , B. Chang , W. Yu , X. Li , D. Wang , Z. Xu , X. Zhang , H. Liu , W. Zhou , Carbon Energy 2022, 4, 237.
|
[24] |
J. Zhang , H. Yang , B. Liu , Adv. Energy Mater. 2021, 11, 2002473.
|
[25] |
C. Ling , Y. Ouyang , Q. Li , X. Bai , X. Mao , A. Du , J. Wang , Small Methods 2019, 3, 1800376.
|
[26] |
H. Gong , Z. Wei , Z. Gong , J. Liu , G. Ye , M. Yan , J. Dong , C. Allen , J. Liu , K. Huang , R. Liu , G. He , S. Zhao , H. Fei , Adv. Funct. Mater. 2022, 32, 2106886.
|
[27] |
J. Liu , Z. Gong , M. Yan , G. He , H. Gong , G. Ye , H. Fei , Small 2022, 18, 2103824.
|
[28] |
H. Jeong , S. Shin , H. Lee , ACS Nano 2020, 14, 14355.
|
[29] |
C. Choi , S. Back , N.-Y. Kim , J. Lim , Y.-H. Kim , Y. Jung , ACS Catal. 2018, 8, 7517.
|
[30] |
S. Mukherjee , X. Yang , W. Shan , W. Samarakoon , S. Karakalos , D. A. Cullen , K. More , M. Wang , Z. Feng , G. Wang , G. Wu , Small Methods 2020, 4, 1900821.
|
[31] |
Q. Qin , T. Heil , M. Antonietti , M. Oschatz , Small Methods 2018, 2, 1800202.
|
[32] |
J. Li , H. Zhang , W. Samarakoon , W. Shan , D. A. Cullen , S. Karakalos , M. Chen , D. Gu , K. L. More , G. Wang , Z. Feng , Z. Wang , G. Wu , Angew. Chem. Int. Ed. Engl. 2019, 58, 18971.
|
[33] |
Y. He , Q. Tan , L. Lu , J. Sokolowski , G. Wu , Electrochem. Energy Rev. 2019, 2, 231.
|
[34] |
M. Chen , Y. He , J. S. Spendelow , G. Wu , ACS Energy Lett. 2019, 4, 1619.
|
[35] |
I. Stassen , N. Campagnol , J. Fransaer , P. Vereecken , D. Devos , R. Ameloot , CrystEngComm 2013, 15, 9308.
|
[36] |
Z. Yu , R. Zhou , M. Ma , R. Zhu , P. Miao , P. Liu , J. Kong , J. Mater. Sci. Technol. 2022, 114, 206.
|
[37] |
J. Chen , Z. Li , X. Wang , X. Sang , S. Zheng , S. Liu , B. Yang , Q. Zhang , L. Lei , L. Dai , Y. Hou , Angew. Chem. Int. Ed. Engl. 2022, 61, e202111683.
|
[38] |
L. Huang , L. Wang , Z. Zhang , X. Guo , X. Zhang , J. M. Chabu , P. Liu , F. Tang , J. Energy Chem. 2022, 71, 225.
|
[39] |
Q. Wang , T. Ina , W.-T. Chen , L. Shang , F. Sun , S. Wei , D. Sun-Waterhouse , S. G. Telfer , T. Zhang , G. I. N. Waterhouse , Sci. Bull. 2020, 65, 1743.
|
[40] |
M. Kunitski , N. Eicke , P. D. Huber , J. Köhler , S. Zeller , J. Voigtsberger , N. Schlott , K. Henrichs , H. Sann , F. Trinter , L. P. H. Schmidt , A. Kalinin , M. S. Schöffler , T. Jahnke , M. Lein , R. Dörner , Nat. Commun. 2019, 10 (1), 1.
|
[41] |
F. Yang , P. Song , X. Liu , B. Mei , W. Xing , Z. Jiang , L. Gu , W. Xu , Angew. Chem. Int. Ed. Engl. 2018, 57, 12303.
|
[42] |
Y. Kong , Y. Li , X. Sang , B. Yang , Z. Li , S. Zheng , Q. Zhang , S. Yao , X. Yang , L. Lei , S. Zhou , G. Wu , Y. Hou , Adv. Mater. 2022, 34, 2103548.
|
[43] |
W. Zheng , F. Chen , Q. Zeng , Z. Li , B. Yang , L. Lei , Q. Zhang , F. He , X. Wu , Y. Hou , Nanomicro Lett. 2020, 12, 108.
|
[44] |
L. Han , S. Song , M. Liu , S. Yao , Z. Liang , H. Cheng , Z. Ren , W. Liu , R. Lin , G. Qi , X. Liu , Q. Wu , J. Luo , H. L. Xin , J. Am. Chem. Soc. 2020, 142, 12563.
|
[45] |
B. Ravel , M. Newville , J. Synchrotron Radiat. 2005, 12, 537.
|
[46] |
I. Petousis , D. Mrdjenovich , E. Ballouz , M. Liu , D. Winston , W. Chen , T. Graf , T. D. Schladt , K. A. Persson , F. B. Prinz , Sci. Data 2017, 4, 160134.
|
[47] |
J. M. Munro , K. Latimer , M. K. Horton , S. Dwaraknath , K. A. Persson , NPJ Comput. Mater. 2020, 6, 112.
|
[48] |
M. K. Horton , J. H. Montoya , M. Liu , K. A. Persson , NPJ Comput. Mater. 2019, 5, 64.
|
[49] |
H. Liu , Y. Zhang , J. Luo , J. Energy Chem. 2020, 49, 51.
|
[50] |
Z. Fang , P. Wu , Y. Qian , G. Yu , Angew. Chem. Int. Ed. Engl. 2021, 60, 4275.
|
[51] |
X. Wang , Y. Wang , X. Sang , W. Zheng , S. Zhang , L. Shuai , B. Yang , Z. Li , J. Chen , L. Lei , N. M. Adli , M. K. H. Leung , M. Qiu , G. Wu , Y. Hou , Angew. Chem. Int. Ed. Engl. 2021, 60, 4192.
|
[52] |
L. Shi , S. Bi , Y. Qi , R. He , K. Ren , L. Zheng , J. Wang , G. Ning , J. Ye , ACS Catal. 2022, 12, 7655.
|
[53] |
S. Zhang , Q. Jiang , T. Shi , Q. Sun , Y. Ye , Y. Lin , L. R. Zheng , G. Wang , C. Liang , H. Zhang , H. Zhao , ACS Appl. Energy Mater. 2020, 3, 6079.
|
[54] |
Y. Wang , X. Cui , J. Zhao , G. Jia , L. Gu , Q. Zhang , L. Meng , Z. Shi , L. Zheng , C. Wang , Z. Zhang , W. Zheng , ACS Catal. 2019, 9, 336.
|
[55] |
D. Chen , M. Luo , S. Ning , J. Lan , W. Peng , Y.-R. Lu , T.-S. Chan , Y. Tan , Small 2022, 18, 2104043.
|
[56] |
R. Zhang , L. Jiao , W. Yang , G. Wan , H.-L. Jiang , J. Mater. Chem. A 2019, 7, 26371.
|
[57] |
W. H. Chen , Q. W. Chen , Q. Chen , C. Cui , S. Duan , Y. Kang , Y. Liu , Y. Liu , W. Muhammad , S. Shao , C. Tang , J. Wang , L. Wang , M. H. Xiong , L. Yin , K. Zhang , Z. Zhang , X. Zhen , J. Feng , C. Gao , Z. Gu , C. He , J. Ji , X. Jiang , W. Liu , Z. Liu , H. Peng , Y. Shen , L. Shi , X. Sun , H. Wang , J. Wang , H. Xiao , F. J. Xu , Z. Zhong , X. Z. Zhang , X. Chen , Sci. China Chem. 2022, 65, 1010.
|
/
〈 | 〉 |