Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules

Jian Gao, Yiyu Feng, Wenyu Fang, Hui Wang, Jing Ge, Xiaoyu Yang, Huitao Yu, Mengmeng Qin, Wei Feng

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (3) : 12607. DOI: 10.1002/eem2.12607
RESEARCH ARTICLE

Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules

Author information +
History +

Abstract

Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules. Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization. This article reports two series of asymmetrically alkyl-grafted azobenzene (Azo-g), with and without a methyl group, that have an optically triggered phase change. Three exothermic modes were designed to utilize crystallization enthalpy (∆Hc) and photothermal (isomerization) energy (∆Hp) at different temperatures determined by the crystallization. Azo-g has high heat output (275–303 J g−1) by synchronously releasing ∆Hc and ∆Hp over a wide temperature range (−79 ℃ to 25 ℃). We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6 ℃ at a temperature of −8 ℃. The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.

Keywords

crystallizability / distributed energy utilization system / energy density / exothermic modes / isomerization

Cite this article

Download citation ▾
Jian Gao, Yiyu Feng, Wenyu Fang, Hui Wang, Jing Ge, Xiaoyu Yang, Huitao Yu, Mengmeng Qin, Wei Feng. Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules. Energy & Environmental Materials, 2024, 7(3): 12607 https://doi.org/10.1002/eem2.12607

References

[1]
L. Wang , Q. Li , Chem. Soc. Rev. 2018, 47, 1044.
[2]
A. K. Saydjari , P. Weis , S. Wu , Adv. Energy Mater. 2017, 7, 1601622.
[3]
Q. Yan , Y. Zhang , Y. Dang , Y. Feng , W. Feng , Energy Stor. Mater. 2020, 24, 662.
[4]
E. N. Cho , D. Zhitomirsky , G. G. Han , Y. Liu , J. C. Grossman , ACS Appl. Mater. Interfaces 2017, 9, 8679.
[5]
M. Yamauchi , K. Yokoyama , N. Aratani , H. Yamada , S. Masuo , Angew. Chem. Int. Ed. Engl. 2019, 58, 14173.
[6]
H. Akiyama , S. Kanazawa , Y. Okuyama , M. Yoshida , H. Kihara , H. Nagai , Y. Norikane , R. Azumi , ACS Appl. Mater. Interfaces 2014, 6, 7933.
[7]
H. M. Bandara , S. C. Burdette , Chem. Soc. Rev. 2012, 41, 1809.
[8]
S. Wu , T. Li , Z.-Y. Zhang , T. Li , R. Wang , Matter 2021, 4, 3385.
[9]
Z. Y. Zhang , Y. He , Z. Wang , J. Xu , M. Xie , P. Tao , D. Ji , K. Moth-Poulsen , T. Li , J. Am. Chem. Soc. 2020, 142, 12256.
[10]
Y. Shi , M. A. Gerkman , Q. Qiu , S. Zhang , G. G. D. Han , J. Mater. Chem. A 2021, 9, 9798.
[11]
J. Tang , Y. Feng , W. Feng , Compos. Commun. 2021, 23, 100575.
[12]
G. G. D. Han , J. H. Deru , E. N. Cho , J. C. Grossman , Chem. Commun. 2018, 54, 10722.
[13]
H. Liu , J. Tang , L. Dong , H. Wang , T. Xu , W. Gao , F. Zhai , Y. Feng , W. Feng , Adv. Funct. Mater. 2020, 31, 2008496.
[14]
W. C. Xu , S. Sun , S. Wu , Angew. Chem. Int. Ed. Engl. 2019, 58, 9712.
[15]
X. Xu , G. Wang , Small 2022, 18, 2107473.
[16]
Q. Qiu , M. A. Gerkman , Y. Shi , G. G. D. Han , Chem. Commun. 2021, 57, 9458.
[17]
R. J. W. Le Févre , J. Northcott , J. Chem. Soc. 1953, 867.
[18]
A. H. Cook , J. Chem. Soc. 1938, 876.
[19]
S. Nakatsuji , M. Fujino , S. Hasegawa , H. Akutsu , J. Yamada , V. S. Gurman , A. K. Vorobiev , J. Org. Chem. 2007, 72, 2021.
[20]
Y. Okui , M. Han , Chem. Commun. 2012, 48, 11763.
[21]
Y. Norikane , E. Uchida , S. Tanaka , K. Fujiwara , E. Koyama , R. Azumi , H. Akiyama , H. Kihara , M. Yoshida , Org. Lett. 2014, 16, 5012.
[22]
Y. Norikane , E. Uchida , S. Tanaka , K. Fujiwara , H. Nagai , H. Akiyama , J. Photopolym. Sci. Technol. 2016, 29, 149.
[23]
J. Hu , X. Li , Y. Ni , S. Ma , H. Yu , J. Mater. Chem. C 2018, 6, 10815.
[24]
D.-Y. Kim , S.-A. Lee , H. Kim , S. M. Kim , N. Kim , K.-U. Jeong , Chem. Commun. 2015, 51, 11080.
[25]
G. G. D. Han , H. Li , J. C. Grossman , Nat. Commun. 2017, 8, 1446.
[26]
K. Ishiba , M. A. Morikawa , C. Chikara , T. Yamada , K. Iwase , M. Kawakita , N. Kimizuka , Angew. Chem. Int. Ed. Engl. 2015, 54, 1532.
[27]
H. Zhou , C. Xue , P. Weis , Y. Suzuki , S. Huang , K. Koynov , G. K. Auernhammer , R. Berger , H.-J. Butt , S. Wu , Nat. Chem. 2017, 9, 145.
[28]
Y. Hao , S. Huang , Y. Guo , L. Zhou , H. Hao , C. J. Barrett , H. Yu , J. Mater. Chem. C 2019, 7, 503.
[29]
H. Akiyama , T. Fukata , A. Yamashita , M. Yoshida , H. Kihara , J. Adhes. 2017, 93, 823.
[30]
G. Alva , L. Liu , X. Huang , G. Fang , Renew. Sust. Energ. Rev. 2017, 68, 693.
[31]
A. Sharma , V. V. Tyagi , C. R. Chen , D. Buddhi , Renew. Sust. Energ. Rev. 2009, 13, 318.
[32]
H. Wang , Y. Feng , H. Yu , L. Dong , F. Zhai , J. Tang , J. Ge , W. Feng , Nano Energy 2021, 89, 106401.
[33]
L. Dong , Y. Feng , L. Wang , W. Feng , Chem. Soc. Rev. 2018, 47, 7339.
[34]
G. Jones , S. H. Chiang , P. T. Xuan , J. Photochem. 1979,
CrossRef Google scholar
[35]
Z. Yoshida , J. Photochem. 1985, 29, 27.
[36]
J. Hu , S. Huang , M. Yu , H. Yu , Adv. Energy Mater. 2019, 9, 1901363.
[37]
N. Kimizuka , N. Yanai , M. Morikawa , Langmuir 2016, 32, 12304.
[38]
M. A. Gerkman , R. S. L. Gibson , J. Calbo , Y. Shi , M. J. Fuchter , G. G. D. Han , J. Am. Chem. Soc. 2020, 142, 8688.
[39]
K. Masutani , M. A. Morikawa , N. Kimizuka , Chem. Commun. 2014, 50, 15803.
[40]
X. Xu , P. Zhang , B. Wu , Y. Xing , K. Shi , W. Fang , H. Yu , G. Wang , ACS Appl. Mater. Interfaces 2020, 12, 50135.
[41]
G. D. Han , S. S. Park , Y. Liu , D. Zhitomirsky , E. Cho , M. Dincã , J. C. Grossman , J. Mater. Chem. A 2016, 4, 16157.
[42]
C. Cabanetos , A. El Labban , J. A. Bartelt , J. D. Douglas , W. R. Mateker , J. M. Frechet , M. D. McGehee , P. M. Beaujuge , J. Am. Chem. Soc. 2013, 135, 4656.
[43]
E. Uchida , R. Azumi , Y. Norikane , Nat. Commun. 2015, 6, 7310.
[44]
T. Itahara , Liq. Cryst. 2010, 37, 1157.
[45]
P. A. Henderson , O. Niemeyer , C. T. Imrie , Liq. Cryst. 2010, 28, 463.
[46]
N. Vieweg , C. Jansen , M. K. Shakfa , M. Scheller , N. Krumbholz , R. Wilk , M. Mikulics , M. Koch , Opt. Express 2010, 18, 6097.
[47]
H. Wang , Y. Feng , J. Gao , W. Fang , J. Ge , X. Yang , F. Zhai , Y. Yu , W. Feng , Adv. Sci. 2022, 9, 2201657.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/