Magnetic Field Controllable Photocurrent Properties in BiFe0.9Ni0.1O3/La0.7Sr0.3MnO3 Laminate Thin Film

Guanzhong Huo, Ke Wang, Qingying Ye, Shuiyuan Chen, Chao Su, Yuxiang Zhang, Guilin Chen, Zhigao Huang

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12601. DOI: 10.1002/eem2.12601
RESEARCH ARTICLE

Magnetic Field Controllable Photocurrent Properties in BiFe0.9Ni0.1O3/La0.7Sr0.3MnO3 Laminate Thin Film

Author information +
History +

Abstract

This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material (La0.7Sr0.3MnO3) and multiferroic (Ni-doped BiFeO3), in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields. More obviously, photocurrent density (J) of the laminate was largely enhanced, the change rate of J up to 287.6% is obtained. This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material. The laminate perfectly combines the functions of sensor and controller, which can not only reflect the intensity of environmental magnetic field, but also modulate the photoelectric conversion performance. This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.

Keywords

bismuth ferrite / low-field magnetoresistance effect / magnetic field modulation / perovskite manganite / photocurrent

Cite this article

Download citation ▾
Guanzhong Huo, Ke Wang, Qingying Ye, Shuiyuan Chen, Chao Su, Yuxiang Zhang, Guilin Chen, Zhigao Huang. Magnetic Field Controllable Photocurrent Properties in BiFe0.9Ni0.1O3/La0.7Sr0.3MnO3 Laminate Thin Film. Energy & Environmental Materials, 2024, 7(2): 12601 https://doi.org/10.1002/eem2.12601

References

[1]
W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R. A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, C. Hou, Adv. Compos. Hybrid Mater. 2022, 5, 3146.
[2]
Q. Zhu, Y. Zhao, B. Miao, H. M. Abo-Dief, M. Qu, R. A. Pashameah, B. B. Xu, M. Huang, H. Algadi, X. Liu, Z. Guo, Prog. Org. Coat. 2022, 172, 107153.
[3]
J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S. A. Alsareii, H. Algadi, M. Kathiresan, Adv. Compos. Hybrid Mater. 2022, 5, 641.
[4]
A. Arun, P. Malrautu, A. Laha, S. Ramakrishna, Eng. Sci. 2021, 16, 71.
[5]
J. Xu, P. Zhu, I. H. E. Azab, B. B. Xu, Z. Guo, A. Y. Elnaggar, G. A. M. Mersal, X. Liu, Y. Zhi, Z. Lin, H. Algadi, S. Shan, Chin. J. Chem. Eng. 2022, 49, 187.
[6]
J. Nan, S. Guo, D. Alhashmialameer, Q. He, Y. Meng, R. Ge, S. M. El-Bahy, N. Naik, V. Murugadoss, M. Huang, B. B. Xu, Q. Shao, Z. Guo, ACS Appl. Nano Mater. 2022, 5, 8755.
[7]
Y. Si, J. Li, B. Cui, D. Tang, L. Yang, V. Murugadoss, S. Maganti, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 1180.
[8]
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed. 2022, 61, e202200705.
[9]
F. Yao, W. Xie, C. Ma, D. Wang, Z. M. El-Bahy, M. H. Helal, H. Liu, A. Du, Z. Guo, H. Gu, Compos. B 2022, 245, 110236.
[10]
R. Guo, L. You, W. Lin, A. Abdelsamie, X. Shu, G. Zhou, S. Chen, L. Liu, X. Yan, J. Wang, J. Chen, Nat. Commun. 2020, 11, 2571.
[11]
D. Pan, G. Yang, H. M. Abo-Dief, J. Dong, F. Su, C. Liu, Y. Li, B. B. Xu, V. Murugadoss, N. Naik, S. M. El-Bahy, Z. M. El-Bahy, M. Huang, Z. Guo, Nano-Micro Lett. 2022, 14, 118.
[12]
K. Ogata, Y. Nakayama, G. Xiao, H. Kaiju, Sci. Rep. 2021, 11, 13807.
[13]
C. Wang, K. Jin, Z. Xu, L. Wang, C. Ge, H. Lu, H. Guo, M. He, G. Yang, Appl. Phys. Lett. 2011, 98, 192901.
[14]
Y.-L. Huang, D. Nikonov, C. Addiego, R. V. Chopdekar, B. Prasad, L. Zhang, J. Chatterjee, H.-J. Liu, A. Farhan, Y.-H. Chu, M. Yang, M. Ramesh, Z. Q. Qiu, B. D. Huey, C. C.-C. Lin, T. Gosavi, J. Íñiguez, J. Bokor, X. Pan, I. Young, L. W. Martin, R. Ramesh, Nat. Commun. 2020, 11, 2836.
[15]
C. Dang, Q. Mu, X. Xie, X. Sun, X. Yang, Y. Zhang, S. Maganti, M. Huang, Q. Jiang, I. Seok, W. Du, C. Hou, Adv. Compos. Hybrid Mater. 2022, 5, 606.
[16]
Y. Ma, X. Xie, W. Yang, Z. Yu, X. Sun, Y. Zhang, X. Yang, H. Kimura, C. Hou, Z. Guo, W. Du, Adv. Compos. Hybrid Mater. 2022, 4, 906.
[17]
C. Hou, B. Wang, V. Murugadoss, S. Vupputuri, Y. Chao, Z. Guo, C. Wang, W. Du, Eng. Sci. 2020, 11, 19.
[18]
H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi, Y. Guo, H. Cai, J. Gu, Adv. Compos. Hybrid Mater. 2021, 4, 36.
[19]
S. Mishra, P. Chaudhary, B. C. Yadav, A. Umar, P. Lohia, D. K. Dwivedi, Eng. Sci. 2021, 15, 138.
[20]
K. Ruan, J. Gu, Macromolecules 2022, 55, 4134.
[21]
A. Chen, C. Wang, O. A. A. Ali, S. F. Mahmoud, Y. Shi, Y. Ji, H. Algadi, S. M. El-Bahy, M. Huang, Z. Guo, D. Cui, H. Wei, Compos. A 2022, 163, 107174.
[22]
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu, F. Hou, J. Ni, C. Zhu, T. Li, Y. Wang, V. Murugadoss, G. A. M. Mersal, M. M. Ibrahime, Z. M. El-Bahy, M. Huang, Z. Guo, J. Mater. Sci. Technol. 2022, 126, 152.
[23]
B. Yuan, Y. Wang, A. Y. Elnaggar, I. H. E. Azab, M. Huang, M. H. H. Mahmoud, S. M. El-Bahy, M. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 813.
[24]
H. Zhu, Y. Wang, M. Qu, Y. Pan, G. Zheng, K. Dai, M. Huang, A. Alhadhrami, M. M. Ibrahim, Z. M. El-Bahy, C. Liu, C. Shen, X. Liu, Adv. Compos. Hybrid Mater. 2022, 5, 1966.
[25]
Y. Wang, D. Yang, M. M. Hessien, D. Kang, M. M. Ibrahim, S. Yao, G. A. M. Mersal, R. Ma, S. M. El-Bahy, M. Huang, Q. Yuan, B. Cui, H. Dengwei, Adv. Compos. Hybrid Mater. 2022, 5, 2106.
[26]
R. Guo, L. Tao, M. Li, Z. Liu, W. Lin, G. Zhou, X. Chen, L. Liu, X. Yan, H. Tian, E. Y. Tsymba, J. Chen, Sci. Adv. 2021, 7, eabf1033.
[27]
D. Yi, P. Yu, Y.-C. Chen, H.-H. Lee, Q. He, Y.-H. Chu, R. Ramesh, Adv. Mater. 2019, 31, 1806335.
[28]
M. J. Calderon, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, Phys. Rev. B 2011, 84, 024422.
[29]
E.-J. Guo, J. R. Petrie, M. A. Roldan, Q. Li, R. D. Desautels, T. Charlton, A. Herklotz, J. Nichols, J. V. Lierop, J. W. Freeland, S. V. Kalinin, H. N. Lee, M. R. Fitzsimmons, Adv. Mater. 2017, 29, 1700790.
[30]
Y. Liu, Y. Qi, P. Zhou, C. Guan, H. Chen, J. Wang, Z. Ma, T. Zhang, Y. Liu, J. Phys. D. Appl. Phys. 2018, 51, 025303.
[31]
L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, J. Wang, Adv. Mater. 2010, 22, 4964.
[32]
C. Jin, L. Kou, J. Phys. D. Appl. Phys. 2021, 54, 413001.
[33]
K. Takiguchi, L. D. Anh, T. Chiba, T. Koyama, D. Chiba, M. Tanaka, Nat. Phys. 2019, 15, 1134.
[34]
F. Y. Bruno, M. N. Grisolia, C. Visani, S. Valencia, M. Varela, R. Abrudan, J. Tornos, A. Rivera-Calzada, A. A. Ünal, S. J. Pennycook, Z. Sefrioui, C. Leon, J. E. Vil-legas, J. Santamaria, A. Bärthélémy, M. Bibes, Nat. Commun. 2015, 6, 6306.
[35]
A. Chen, M. Weigand, Z. Bi, W. Zhang, X. Lü, P. Dowden, J. L. MacManus-Driscoll, H. Wang, Q. Jia, Sci. Rep. 2014, 4, 5426.
[36]
A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R. D. Johnson, R. Ruffer, A. F. Popkov, C. Carrétéro, P. Rovillain, J.-M. Le Breton, B. Dkhil, M. Cazayous, Y. Gallais, M.-A. Méasson, A. Sacuto, P. Manuel, A. K. Zvezdin, A. Bärthélémy, J. Juraszek, M. Bibes, Adv. Mater. 2017, 29, 1602327.
[37]
J. Beltran-Huarac, D. Diaz-Diestra, M. Bsatee, J. Wang, W. M. Jadwisienczak, B. R. Weiner, G. Morell, Nanotechnology 2016, 27, 085703.
[38]
B. Ding, W. Kuang, Y. Pan, I. V. Grigorieva, A. K. Geim, B. Liu, H.-M. Cheng, Nat. Commun. 2020, 11, 3725.
[39]
H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A. Kobayashi, T. Nakano, K. Yakushiji, R. Arita, S. Miwa, Y. Otani, S. Nakatsuji, Nature 2020, 580, 30.
[40]
Y.-D. Liou, Y.-Y. Chiu, R. T. Hart, C.-Y. Kuo, Y.-L. Huang, Y.-C. Wu, R. V. Chopdekar, H.-J. Liu, A. Tanaka, C.-T. Chen, C.-F. Chang, L. H. Tjeng, Y. Cao, V. Nagarajan, Y.-H. Chu, Y.-C. Chen, J.-C. Yang, Nat. Mater. 2019, 18, 580.
[41]
Z. Huang, P. Li, Z. Fan, H. Fan, Q. Luo, C. Chen, D. Chen, M. Zeng, M. Qin, Z. Zhang, X. Lu, X. Gao, J.-M. Liu, Phys. Status Solidi RRL 2018, 12, 1700301.
[42]
H. Matsuo, Y. Noguchi, M. Miyayama, Nat. Commun. 2017, 8, 207.
[43]
M.-M. Yang, M. Alexe, Adv. Mater. 2018, 30, 1704908.
[44]
A. Molinari, H. Hahn, R. Kruk, Adv. Mater. 2019, 31, 1806662.
[45]
L. You, F. Zheng, L. Fang, Y. Zhou, L. Z. Tan, Z. Zhang, G. Ma, D. Schmidt, A. Rusydi, L. Wang, L. Chang, A. M. Rappe, J. Wang, Sci. Adv. 2018, 4, eaat3438.
[46]
D. Li, D. Zheng, C. Jin, W. Zheng, H. Bai, ACS Appl. Mater. Interfaces 2018, 10, 19836.
[47]
W. Huang, J. Chakrabartty, C. Harnagea, D. Gedamu, I. Ka, M. Chaker, F. Rosei, R. Nechache, ACS Appl. Mater. Interfaces 2018, 10, 12790.
[48]
Y.-H. Hsieh, F. Xue, T. Yang, H.-J. Liu, Y. Zhu, Y.-C. Chen, Q. Zhan, C.-G. Duan, L.-Q. Chen, Q. He, Y.-H. Chu, Nat. Commun. 2016, 7, 13199.
[49]
Y. Yu, X. Wang, Adv. Mater. 2018, 30, 1800154.
[50]
Y. Heo, B.-K. Jang, S. J. Kim, C.-H. Yang, J. Seidel, Adv. Mater. 2014, 26, 7568.
[51]
L. Wu, A. R. Akbashev, A. A. Podpirka, J. E. Spanier, P. K. Davies, J. Am. Ceram. Soc. 2019, 102, 4188.
[52]
X. Han, Y. Ji, Y. Yang, Adv. Funct. Mater. 2022, 32, 2109625.
[53]
S. Körbel, S. Sanvito, Phys. Rev. B 2020, 102, 081304.
[54]
C. Ponraj, G. Vinitha, J. Daniel, Mater. Res. Express 2019, 6, 084006.
[55]
Y. Yun, L. Mühlenbein, D. S. Knoche, A. Lotnyk, A. Bhatnagar, Sci. Adv. 2021, 7, eabe4206.
[56]
H. Xu, H. Zhang, Y. Ma, M. Jiang, Y. Zhang, Y. Wu, H. Zhang, R. Xia, Q. Niu, X. Li, W. Huang, Sci. Rep. 2019, 9, 15441.
[57]
Y. Ren, F. Nan, L. You, Y. Zhou, Y. Wang, J. Wang, X. Su, M. Shen, L. Fang, Adv. Sci. small 2017, 13, 1603457.
[58]
M. Huijben, P. Yu, L. W. Martin, H. J. A. Molegraaf, Y.-H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, R. Ramesh, Adv. Mater. 2013, 25, 4739.
[59]
S. Majumdar, S. van Dijken, J. Phys. D. Appl. Phys. 2014, 47, 034010.
[60]
A. Chen, Z. Bi, C.-F. Tsai, L. Chen, Q. Su, X. Zhang, H. Wang, Cryst. Growth Des. 2011, 11, 5405.
[61]
C. Reitz, D. Wang, D. Stoeckel, A. Beck, T. Leichtweiss, H. Hahn, T. Brezesinski, ACS Appl. Mater. Interfaces 2017, 9, 22799.
[62]
A. Boileau, M. Dallocchio, F. Baudouin, A. David, U. Lüders, B. Mercey, A. Pautrat, V. Demange, M. Guilloux-Viry, W. Prellier, A. Fouchet, ACS Appl. Mater. Interfaces 2019, 11, 37302.
[63]
Y. Ogimoto, M. Izumi, A. Sawa, T. Manako, H. Sato, H. Akoh, M. Kawasaki, Y. Tokura, Jpn. J. Appl. Phys. 2003, 42, L369..
[64]
K. Tanaka, S. Okamura, T. Shiosaki, Jpn. J. Appl. Phys. 2001, 40, 6821.
[65]
Y. M. Liang, X. K. Ning, Z. J. Wang, B. He, Y. Bai, X. G. Zhao, W. Liu, Z. D. Zhang, J. Phys. Chem. C 2017, 121, 16810.
[66]
W. Sun, W. Wang, D. Chen, Z. Cheng, T. Jia, Y. Wang, J. Phys. Chem. C 2019, 123, 16393.
[67]
K. H. Tan, Y.-W. Chen, C. N. Van, H. Wang, J.-W. Chen, F. S. Lim, K.-H. Chew, Q. Zhan, C.-L. Wu, S.-P. Chai, Y.-H. Chu, W. S. Chang, ACS Appl. Mater. Interfaces 2019, 11, 1655.
[68]
A. Chen, Z. Bi, C.-F. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J. L. MacManusDriscoll, H. Wang, Adv. Funct. Mater. 2011, 21, 2423.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/