Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes

Lujuan Liu, Tong Wang, Li Sun, Tinglu Song, Hao Yan, Chunli Li, Daobin Mu, Jincheng Zheng, Yang Dai

PDF
Energy & Environmental Materials ›› 2024, Vol. 7 ›› Issue (2) : 12580. DOI: 10.1002/eem2.12580
RESEARCH ARTICLE

Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes

Author information +
History +

Abstract

Poly (ethylene oxide) (PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries; however, they present limitations of low room-temperature ionic conductivity, and interfacial incompatibility with high voltage cathodes. Therefore, a salt engineering of 1, 1, 2, 2, 3, 3-hexafluoropropane-1, 3-disulfonimide lithium salt (LiHFDF)/LiTFSI system was developed in PEO-based electrolyte, demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage. We show, by manipulating the interaction between PEO matrix and TFSI--HFDF-, the optimized solid-state polymer electrolyte achieves maximum Li+ conduction of 1.24 × 10-4 S cm-1 at 40 ℃, which is almost 3 times of the baseline. Also, the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO4/Li and LiNi0.8Mn0.1Co0.1O2/Li (3.0-4.4 V, 200 cycles) based all-solid-state lithium batteries at 40 ℃.

Keywords

all-solid-state battery / high voltage / li-ion conductivity / molecular interaction / poly(ethylene oxide)

Cite this article

Download citation ▾
Lujuan Liu, Tong Wang, Li Sun, Tinglu Song, Hao Yan, Chunli Li, Daobin Mu, Jincheng Zheng, Yang Dai. Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes. Energy & Environmental Materials, 2024, 7(2): 12580 https://doi.org/10.1002/eem2.12580

References

[1]
Q. Zhao , X. Liu , S. Stalin , K. Khan , L. A. Archer , Nat. Energy 2019, 4, 365.
[2]
S. Randau , D. A. Weber , O. Kötz , R. Koerver , P. Braun , A. Weber , E. Ivers-Tiffée , T. Adermann , J. Kulisch , W. G. Zeier , F. H. Richter , J. Janek , Nat. Energy 2020, 5, 259.
[3]
T. Famprikis , P. Canepa , J. A. Dawson , M. S. Islam , C. Masquelier , Nat. Mater. 2019, 18, 1278.
[4]
S. Yang , Z. Liu , Y. Liu , Y. Jiao , J. Mater. Sci. 2014, 50, 1544.
[5]
G. Zhang , Y. L. Hong , Y. Nishiyama , S. Bai , S. Kitagawa , S. Horike , J. Am. Chem. Soc. 2019, 141, 1227.
[6]
Y. Li , W. Zhou , X. Chen , X. Lu , Z. Cui , S. Xin , L. Xue , Q. Jia , J. B. Goodenough , Proc. Natl. Acad. Sci. 2016, 113, 13313.
[7]
D. Zhou , D. Shanmukaraj , A. Tkacheva , M. Armand , G. Wang , Chem 2019, 5, 2326.
[8]
Z. Sun , S. Ding , Chin. Sci. Bull. 2018, 63, 2280.
[9]
J. Zheng , C. Sun , Z. Wang , S. Liu , B. An , Z. Sun , F. Li , Angew. Chem. Int. Ed. 2021, 60, 18448.
[10]
K. Nie , X. Wang , J. Qiu , Y. Wang , Q. Yang , J. Xu , X. Yu , H. Li , X. Huang , L. Chen , ACS Energy Lett. 2020, 5, 826.
[11]
H. Nie , N. S. Schauser , J. L. Self , T. Tabassum , S. Oh , Z. Geng , S. D. Jones , M. S. Zayas , V. G. Reynolds , M. L. Chabinyc , C. J. Hawker , S. Han , C. M. Bates , R. A. Segalman , J. Read de Alaniz , J. Am. Chem. Soc. 2021, 143, 1562.
[12]
Z. Xue , D. He , X. Xie , J. Mater. Chem. A 2015, 3, 19218.
[13]
B. Xu , X. Li , C. Yang , Y. Li , N. S. Grundish , P. H. Chien , K. Dong , I. Manke , R. Fang , N. Wu , H. Xu , A. Dolocan , J. B. Goodenough , J. Am. Chem. Soc. 2021, 143, 6542.
[14]
N. Wu , P. H. Chien , Y. Li , A. Dolocan , H. Xu , B. Xu , N. S. Grundish , H. Jin , Y. Y. Hu , J. B. Goodenough , J. Am. Chem. Soc. 2020, 142, 2497.
[15]
R. Fang , B. Xu , N. S. Grundish , Y. Xia , Y. Li , C. Lu , Y. Liu , N. Wu , J. B. Goodenough , Angew. Chem. Int. Ed. 2021, 60, 17701.
[16]
H. Xu , P. H. Chien , J. Shi , Y. Li , N. Wu , Y. Liu , Y. Y. Hu , J. B. Goodenough , Proc. Natl. Acad. Sci. 2019, 116, 18815.
[17]
D. Sharon , P. Bennington , M. A. Webb , C. Deng , J. J. de Pablo , S. N. Patel , P. F. Nealey , J. Am. Chem. Soc. 2021, 143, 3180.
[18]
C.-Z. Zhao , B.-C. Zhao , C. Yan , X.-Q. Zhang , J.-Q. Huang , Y. Mo , X. Xu , H. Li , Q. Zhang , Energy Storage Mater. 2020, 24, 75.
[19]
S. Xu , Z. Sun , C. Sun , F. Li , K. Chen , Z. Zhang , G. Hou , H.-M. Cheng , F. Li , Adv. Funct. Mater. 2020, 30, 2007172.
[20]
H. M. J. C. Pitawala , M. A. K. L. Dissanayake , V. A. Seneviratne , B. E. Mellander , I. Albinson , J. Solid State Electrochem. 2008, 12, 783.
[21]
O. Sheng , J. Zheng , Z. Ju , C. Jin , Y. Wang , M. Chen , J. Nai , T. Liu , W. Zhang , Y. Liu , X. Tao , Adv. Mater. 2020, 32, e2000223.
[22]
G. G. Eshetu , X. Judez , C. Li , O. Bondarchuk , L. M. Rodriguez-Martinez , H. Zhang , M. Armand , Angew. Chem. Int. Ed. 2017, 56, 15368.
[23]
Q. Zhou , C. Fu , R. Li , X. Zhang , B. Xie , Y. Gao , G. Yin , P. Zuo , Chem. Eng. J. 2022, 437, 135419.
[24]
F. Fu , Y. Zheng , N. Jiang , Y. Liu , C. Sun , A. Zhang , H. Teng , L. Sun , H. Xie , Chem. Eng. J. 2022, 450, 137776.
[25]
X. Lin , J. Yu , M. B. Effat , G. Zhou , M. J. Robson , S. C. T. Kwok , H. Li , S. Zhan , Y. Shang , F. Ciucci , Adv. Funct. Mater. 2021, 31, 2010261.
[26]
Y. Xiao , B. Han , Y. Zeng , S. S. Chi , X. Zeng , Z. Zheng , K. Xu , Y. Deng , Adv. Energy Mater. 2020, 10, 1903937.
[27]
H. Zhuang , W. Ma , J. Xie , X. Liu , B. Li , Y. Jiang , S. Huang , Z. Chen , B. Zhao , J. Alloys Compd. 2021, 860, 157915.
[28]
C. Hu , Y. Shen , M. Shen , X. Liu , H. Chen , C. Liu , T. Kang , F. Jin , L. Li , J. Li , Y. Li , N. Zhao , X. Guo , W. Lu , B. Hu , L. Chen , J. Am. Chem. Soc. 2020, 142, 18035.
[29]
G. G. Eshetu , X. Judez , C. Li , M. Martinez-Ibanez , I. Gracia , O. Bondarchuk , J. Carrasco , L. M. Rodriguez-Martinez , H. Zhang , M. Armand , J. Am. Chem. Soc. 2018, 140, 9921.
[30]
X. Xu , L. Jiang , Z. Zhou , X. Wu , Y. Wang , ACS Appl. Mater. Interfaces 2012, 4, 4331.
[31]
A. Wu , F. Lu , P. Sun , X. Qiao , X. Gao , L. Zheng , Langmuir 2017, 33, 13982.
[32]
J. Mindemark , M. J. Lacey , T. Bowden , D. Brandell , Prog. Polym. Sci. 2018, 81, 114.
[33]
T. K. Lee , N. F. M. Zaini , N. N. Mobarak , N. H. Hassan , S. A. M. Noor , S. Mamat , K. S. Loh , K. H. KuBulat , M. S. Su'ait , A. Ahmad , Electrochim. Acta 2019, 316, 283.
[34]
N. Wu , P.-H. Chien , Y. Qian , Y. Li , H. Xu , N. S. Grundish , B. Xu , H. Jin , Y.-Y. Hu , G. Yu , J. B. Goodenough , Angew. Chem. Int. Ed. 2020, 59, 4131.
[35]
J. Li , W. Li , Y. You , A. Manthiram , Adv. Energy Mater 2018, 8, 1801957.
[36]
X. Fan , X. Ji , F. Han , J. Yue , J. Chen , L. Chen , T. Deng , J. Jiang , C. Wang , Sci. Adv. 2018, 4, eaau9245.
[37]
J. Zhao , L. Liao , F. Shi , T. Lei , G. Chen , A. Pei , J. Sun , K. Yan , G. Zhou , J. Xie , C. Liu , Y. Li , Z. Liang , Z. Bao , Y. Cui , J. Am. Chem. Soc. 2017, 139, 11550.

RIGHTS & PERMISSIONS

2022 2022 The Authors. Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/